Похищать данные можно, анализируя звук нажимаемых клавиш
|
Группа исследователей из британских университетов разработала алгоритм с использованием методов глубокого обучения нейросетей, который способен с точностью до 95 % распознавать данные, анализируя звук нажимаемых клавиш клавиатуры, записанный через микрофон. В процессе обучения алгоритма классификации звуков также использовались аудиозаписи, сделанные через Zoom, но в этом случае точность распознавания снизилась до 93 %. Акустическая атака с использованием упомянутого алгоритма несёт серьёзную угрозу безопасности данных, поскольку такой подход может использоваться для кражи паролей и другой конфиденциальной информации. Более того, в отличии от других атак через сторонние каналы, требующих соблюдения специальных условий, акустические атаки становятся проще в реализации по мере распространения микрофонов, обеспечивающих высококачественный захват звука. В сочетании с быстрым развитием технологий машинного обучения акустические атаки через сторонние каналы становятся более опасным инструментом в руках злоумышленников, чем было принято считать прежде. |
Для проведения такой атаки злоумышленникам требуется осуществить запись звука нажимаемых клавиш на клавиатуре жертвы, поскольку эти данные требуются для обучения алгоритма прогнозирования. Сделать это можно с помощью находящегося поблизости микрофона или же смартфона, заражённого вредоносным программным обеспечением, открывающим доступ к микрофону устройства. Кроме того, запись звука нажимаемых клавиш можно осуществить во время звонка в Zoom. В рамках нынешнего исследования были собраны обучающие данные, представляющие запись звука нажатия 36 клавиш MacBook Pro, каждая из которых нажималась по 25 раз. После этого были получены осциллограммы и спектрограммы, которые позволили визуализировать идентифицируемые различия при нажатии каждой клавиши. Исследователи также выполнили определённые шаги для обработки данных в плане усиления сигнала для упрощения идентификации клавиш. Спектрограммы использовались для обучения классификатора изображений CoAtNet. |
В эксперименте был задействован один и тот же ноутбук Apple с клавиатурой, которая используется во всех моделях портативных компьютеров компании последние два года, а также iPhone 13 mini, расположенный на расстоянии 17 см от ноутбука и записывающий звук, и сервис Zoom, который также использовался для записи звука нажимаемых клавиш. В итоге исследователям удалось добиться того, что классификатор CoAtNet достиг 95 % точности при обработке записей со смартфона и 93 % — при обработке данных, записанных через Zoom. При эксперименте с использованием Skype точность снизилась до 91,7 %. Пользователям, которых беспокоят акустические атаки, исследователи рекомендуют изменить стиль печати, а также использовать случайно генерируемые пароли. В дополнение к этому можно задействовать программные средства для воспроизведения звуков нажатия клавиш, белого шума или аудиофильтры для клавиатуры. |
Источник |
При использовании материалов с сайта активная ссылка на него обязательна
|