Страх перед апокалипсисом с участием роботов
|
Страх перед апокалипсисом с участием роботов скрывает реальные проблемы, с которыми мы сталкиваемся, позволяя алгоритмам управлять нашей жизнью. Если верить экспертам в области искусственного интеллекта, мы неуклонно движемся к определенной точке, после которой нам уже не придется ничего изобретать: искусственный интеллект будет сам все делать, а машины будут улучшаться экспоненциально. Если это произойдет, что же станет с нами? |
За последние несколько лет многие видные ученые, от Стивена Хокинга до Элона Маска, предупреждали нас, что нам стоит крайне обеспокоиться возможными опасными исходами появления сверхразумного искусственного интеллекта. И они подкрепляют свои слова действиями: Маск покровительствует OpenAI, организации, которая разрабатывает ИИ, который будет приносить пользу человечеству. |
Однако многие считают их опасения преувеличенными. Как отмечает Эндрю Ын из Стэнфордского университета, который также является главным научным сотрудником китайского интернет-гиганта Baidu, переживать о восстании машин — это как беспокоиться о перенаселенности Марса. |
Но это, конечно, не значит, что наша растущая зависимость от ИИ не несет реальных рисков. На самом деле, эти риски уже здесь. По мере того как интеллектуальные системы принимают все большее участие в разных сферах, от здравоохранения до уголовного правосудия, существует опасность того, что важные части нашей жизни останутся без должного внимания. |
Более того, ИИ может привести к неприятным последствиям, если мы не будем к ним готовы, например, изменит наше отношение к врачам на резко неприязненное. |
Два слова об искусственном интеллекте |
Если простыми словами, это машины, которые делают вещи, которые обычно требуют умственных усилий со стороны человека: понимание естественного языка, распознавание лиц на фотографиях, управление автомобилями и так далее. |
Существует разница между механическим манипулятором на производственной линии, который запрограммирован на выполнение одной и той же задачи, и манипулятором, который самостоятельно учится выполнять различные задачи методом проб и ошибок. |
Как ИИ помогает нам? |
Ведущий подход в ИИ сейчас — это машинное обучение, в ходе которого программы обучаются выявлять определенные паттерны в больших объемах данных, например, идентифицировать лицо на изображении или делать победный ход в настольной игре го. Этот метод можно применить к самым разным проблемам. Например, обучить компьютеры выявлять конкретную картину на медицинских снимках. Компания DeepMind, разрабатывающая искусственный интеллект и принадлежащая Google, разрабатывает программное обеспечение, которое обучается диагностировать рак и заболевания глаз по сканам пациентов. Другие используют машинное обучение, чтобы обнаруживать ранние признаки заболеваний сердца и Альцгеймера. |
Искусственный интеллект также уже используется для анализа больших объемов молекулярной информации в поисках потенциальных новых вариантов лекарств — для людей этот процесс занимает чрезвычайно много времени. Очень скоро машинное обучение может стать незаменимым для медицины. |
Искусственный интеллект также помогает нам управлять чрезвычайно сложными системами, вроде сети глобальных поставок. Система в самом центре контейнерного терминала Порт Ботани в Сиднее управляет движением десятков тысяч транспортных контейнеров, парком автоматизированных машин и так далее, полностью без людей. В горнодобывающей промышленности системы оптимизации все чаще используются для планирования и координации движения ресурсов, например, железной руды. |
ИИ работают везде, куда ни глянь, от финансов до транспорта, управляют самолетами и следят за рынком акций. И защищают от спама вашу почту. Но это только начало. По мере развития ИИ будет становиться все сложнее и интереснее. |
В чем же проблема? |
Вместо того чтобы беспокоиться о будущем перевороте ИИ, самый большой риск лежит в том, что мы можем слишком сильно довериться интеллектуальным системам, которые строим. Достаточно вспомнить, что машинное обучение тренирует программное обеспечение выявлять паттерны в данных. После обучения оно приступает к анализу свежих, еще не изученных данных. Но когда компьютер выплевывает ответ, мы, как правило, понятия не имеем, как он к нему пришел. |
Здесь на лицо очевидные проблемы. Система хороша ровно настолько, насколько хороши данные, по которым она учится. Возьмите систему, обученную определять, у каких пациентов с пневмонией выше шанс умереть, чтобы их пускали в больницу первыми. Допустим, она неосторожно классифицирует больных с бронхиальной астмой как пациентов с низким риском. Потому что в обычной ситуации люди с астмой и пневмонией идут прямо на интенсивную терапию, поэтому получают лечение, которое снижает риск смерти. Машинное обучение видит это как «астма + пневмония = риск смерти ниже». |
По мере того как ИИ получают доступ ко всем сферам вашей жизни, повышается и риск того, что что-то пойдет не так — если это не предусмотреть. И поскольку большая часть данных, которые мы скармливаем ИИ, несовершенна, мы не должны ожидать идеальных ответов в большинстве случаев. Мы строим искусственный интеллект по своему образу и подобию; скорее всего, он будет «не очень», как и мы. |
http://hi-news.ru/medicina/my-nepravilno-boimsya-iskusstvennogo-intellekta.html |
При использовании материалов с сайта активная ссылка на него обязательна
|