Негативные ретвиты усиливают теории заговора
|
Группа учёных-бихевиористов, использующая большие данные и симуляционную модель для анализа «твитов» в социальных сетях в период президентских выборов 2020 года, обнаружила, что распространению теорий заговора о мошенничестве на выборах в Твиттере (теперь называемом X) способствовала предвзятость негатива. Результаты исследования под руководством Мэйсона Янгблада, доктора философии, научного сотрудника Института перспективных вычислительных наук Университета Стоуни-Брук, опубликованы в журнале Humanities and Social Sciences Communications. Исследователи смоделировали поведение около 350 000 реальных пользователей Twitter. Они обнаружили, что шаблоны обмена примерно 4 миллионами твитов о фальсификациях на выборах согласуются с тем, что люди с гораздо большей вероятностью ретвитят посты в социальных сетях, которые содержат более сильные негативные эмоции. |
Данные для их исследования были взяты из набора данных VoterFraud2020, собранного в период с 23 октября по 16 декабря 2020 года. Этот набор данных включает 7,6 миллиона твитов и 25,6 миллиона ретвитов, которые были собраны в режиме реального времени с использованием программного интерфейса потоковой передачи X в соответствии с установленными правилами для этическое использование данных и данных социальных сетей. «Теории заговора о крупномасштабных фальсификациях на выборах широко и быстро распространились в Твиттере во время президентских выборов в США в 2020 году, но неясно, какие процессы ответственны за их распространение», — говорит Янгблад. Учитывая это, команда провела моделирование того, как отдельные пользователи пишут и ретвитят друг друга в Твиттере с разными уровнями и формами когнитивной предвзятости, и сравнила полученные результаты с реальными моделями поведения ретвитов среди сторонников теорий заговора с мошенничеством на выборах во время и вокруг выборов. |
«Наши результаты показывают, что распространение сообщений о мошенничестве на выборах в Твиттере было вызвано предвзятостью к твитам с более негативными эмоциями, и это имеет важные последствия для текущих дебатов о том, как противостоять распространению теорий заговора и дезинформации в социальных сетях», — Янгблад добавляет. С помощью моделирования и численного анализа Янгблад и его коллеги обнаружили, что их результаты согласуются с предыдущими исследованиями других авторов, предполагающими, что эмоционально негативный контент имеет преимущество в социальных сетях в различных областях, включая освещение новостей и политический дискурс. Модель также показала, что, хотя негативные твиты с большей вероятностью ретвитировались, твиты с цитатами, как правило, были более умеренными, чем оригинальные, поскольку люди, как правило, не усиливали негатив, комментируя что-либо. Янгблад говорит, что, поскольку модель, основанная на симуляции, достаточно хорошо воссоздает закономерности в реальных данных, она потенциально может быть полезна для моделирования мер против дезинформации в будущем. Например, модель можно легко изменить, чтобы отразить способы, с помощью которых компании социальных сетей или политики могут попытаться ограничить распространение информации, например, снизить скорость, с которой твиты попадают в ленту новостей людей. |
Источник |
При использовании материалов с сайта активная ссылка на него обязательна
|