Искусственный интеллект в медицине
Машинное обучение все чаще находит применение в медицине. В обозримом будущем алгоритмы не заменят врачей, но помогут им с рутинной работой и компенсируют недостатки людей, которым свойственно уставать, лениться и пытаться упростить себе жизнь. В книге «Искусственный интеллект в медицине: Как умные технологии меняют подход к лечению» (издательство «Альпина Паблишер»), переведенной на русский язык Александром Анваером, профессор молекулярной медицины, кардиолог и исследователь Эрик Тополь рассказывает об алгоритмах, меняющих современную диагностику и лечение. N + 1 предлагает своим читателям ознакомиться с отрывком, в котором рассказывается, как машинное обучение упрощает исследование основ геномных болезней.
Огромные массивы данных, которые имеются на сегодня в биологии и медицине, настоятельно требуют внедрения машинного обучения и искусственного интеллекта. Возьмем для примера «Атлас ракового генома» (TCGA), содержащий многомерные биологические данные, охватывающие множество «-омик» — геномику, протеомику и так далее. Всего в атласе содержится более 2,5 петабайт информации, извлеченной из данных по более чем 30 тысячам пациентов. Ни одному человеку не под силу просмотреть и проанализировать все эти данные. Онколог Роберт Дарнелл, работающий в настоящее время на факультете нейробиологии Рокфеллеровского университета, заметил: «Мы, как биологи, можем лишь указать, например, на биологические основы аутизма. Мощь машины, которая может задать триллион вопросов там, где мы успеваем задать всего десять, меняет правила игры».
Правда, в отличие от тех осязаемых и зримых изменений, которые уже сегодня ощущают в связи с применением искусственного интеллекта специалисты таких отраслей медицины, как рентгенология и патологическая анатомия (то есть там, где требуется распознавание сложных образов), наука стоит особняком: искусственный интеллект пока не посягает на статус-кво ученых, ИИ может им только помочь. Как выразился Тим Аппенцеллер в материале для журнала Science, искусственный интеллект — это пока «подмастерье» ученых. Но искусственный интеллект уже может предложить им весьма ощутимую помощь: на обложке одного из номеров Science 2017 г. так и было написано — «Искусственный интеллект преображает науку». Оказывается, ИИ не только «породил нейробиологию» (как мы скоро сами убедимся), но и «перезагрузил процесс открытия». В самом деле, Science разглядел там, за горизонтом, нечто по-настоящему новое — «перспективу полностью автоматизированной науки», и это, по мнению авторов статьи, означало, что «неутомимый ученик очень скоро может стать равноправным коллегой».
ИИ-«коллега» — это, на мой взгляд, дело довольно далекого будущего, но его проникновение в науку происходит быстрыми темпами, независимо от того, сможет ли он когда-нибудь потеснить ученых. И действительно, ИИ в приложении к биологическим наукам развивается быстрее, чем в приложении к здравоохранению. В конце концов, данные фундаментальной науки далеко не всегда требуют валидации на основании клинических испытаний. Фундаментальная наука не нуждается в одобрении со стороны медицинского сообщества, ее не нужно внедрять в практику, она не обязана соответствовать строгим требованиям регулирующего законодательства. Впрочем, несмотря на то, что наука не всегда способна пробиться в клиническую практику, в конечном счете все передовые достижения — будь то открытие новых, более эффективных лекарств или выявление биохимических механизмов, отвечающих за здоровье и болезни, — так или иначе повлияют на практикующих медиков. Давайте посмотрим, чего же добился наш «подмастерье».
В геномике и биологии искусственный интеллект — незаменимый партнер ученых, так как машины обладают зрением, способным различать вещи, недоступные человеческому глазу, и просеивать огромные массивы данные, непостижимые человеческим разумом. Богатая данными геномика представляет собой идеальное поле приложения компьютерных методов. Каждый из нас — это сокровищница генетических данных, в диплоидном (от отца и матери) хромосомном наборе каждого из нас содержится 3,2 млрд пар различных сочетаний нуклеотидов: А (аденин), Ц (цитозин), Г (гуанин) и Т (тимин), причем 98,5 процента этого генома не кодирует никаких белков. То есть спустя 10 с лишним лет после полной расшифровки человеческого генома функция всего этого материала остается непонятной. Одна из первых попыток глубокого обучения, касающегося генома, Deep-SEA, была посвящена выяснению функции элементов, не принимающих участия в кодировании белков. В 2015 г. Цзянь Чжоу и Ольга Трояновская из Принстонского университета опубликовали алгоритм, который после обучения на основе данных каталогизации десятков тысяч нуклеотидов, не кодирующих белки, оказался способным предсказать, как именно последовательности ДНК взаимодействуют с хроматином. Хроматин состоит из крупных макромолекул, которые обеспечивают «упаковку» ДНК для хранения, а также помогают развертывать ее нить для транскрипции РНК и (в конечном счете) для трансляции белков. Таким образом, взаимодействие между хроматином и последовательностями ДНК играет важную регуляторную роль. Сяохуэй Се, специалист по ИТ из Калифорнийского университета в Ирвайне назвал это «важной вехой на пути приложения глубокого обучения к геномике».
Еще одним доказательством этой концепции, одним из первых, стало исследование генетических основ расстройств аутического спектра (РАС). До этого исследования скаутизмом с высокой степенью достоверности связывали только 65 генов. Алгоритмы позволили идентифицировать 2500 генов, которые с большой вероятностью влияют на проявление симптомов или даже являются первопричиной РАС. Алгоритмы позволили даже картировать взаимодействие заинтересованных генов.
Глубокое обучение также помогает решать фундаментальную задачу интерпретации вариантов идентифицированных последовательностей полного генома человека. Наиболее широко используется программа Genome Analysis Toolkit (GATK). В конце 2017 г. компания Google Brain разработала и внедрила систему DeepVariant в дополнение к GATK и другим ранее разработанным инструментам. DeepVariant не использует статистический подход ни для выявления мутаций и ошибок, ни для вычисления вероятности, истинным или ошибочным является сочетание нуклеотидов. Вместо этого система создает визуализацию базовых эталонных (референсных) геномов, известную под названием «стопки изображений», и использует ее для глубокого обучения сверточной нейронной сети, а затем создает визуализации заново секвенированных геномов, в которых ученые хотят идентифицировать варианты. К сожалению, несмотря на то, что DeepVariant находится в открытом доступе, использовать его сложно, так как он требует массивных вычислений и дает большую нагрузку на процессор, чем GATK.
Определение потенциальной патогенности обнаруженного варианта представляет собой нелегкую задачу, а если вариант находится в части генома, не кодирующей белки, то дело становится еще более запутанным. И хотя на сегодня существует более 10 алгоритмов ИИ, направленных на решение этой задачи, идентификация вариантов генома, вызывающих заболевания, остается пока самой важной нерешенной проблемой. Принстонская команда, упомянутая выше, сделала еще один важный шаг вперед в приложении глубокого обучения к геномике, приступив к предсказанию влияния вариантов элементов генома, не участвующих в кодировании, на экспрессию генов и риск заболеваний6. Коллектив ученых компании Illumina использовал глубокое обучение в приложении к исследованию генома приматов для повышения точности прогнозирования болезнетворных мутаций человеческого генома.
Геномика (исследования ДНК) — не единственная «-омика», созревшая для машинного и глубокого обучения. Глубокое обучение уже используется для каждого уровня биологической информации, включая данные об экспрессии генов, о факторах транскрипции и РНК-связывающих белках, о протеомике и метагеномике (в частности, о кишечном микробиоме), а также для изучения данных, касающихся отдельных клеток. DeepSequence и DeepVariant — инструменты искусственного интеллекта, помогающие разобраться в функциональном эффекте мутаций и точно идентифицировать варианты генома, — соответственно, и качество выполнения этих задач у них выше, чем у всех прежних моделей. Алгоритм DeepBind используется для предсказания функциональной адекватности факторов транскрипции.
Программа DeFine способна количественно оценивать связывание ДНК с факторами транскрипции РНК и помогает оценить патогенную роль вариантов последовательностей в областях генома, не кодирующих белки. Были проведены работы по предсказанию специфичности ДНК- и РНК-связывающих белков, выявлению последовательностей, кодирующих определенные белковые каркасы по последовательностям аминокислотных остатков, а также по определению гиперчувствительности клеток многих типов к ДНК-азе I. Эпигеномы анализировали с помощью алгоритма DeepCpG, который способен предсказывать степень метилирования оснований в отдельных клетках. Также с помощью этой программы были предсказаны места связывания ДНК в хроматине и сайты метилирования, а в ходе сложнейшего анализа данных о последовательностях нуклеотидов в РНК отдельных клеток были усовершенствованы глубокие нейронные сети. Внутри разных «-омик» и в промежутках между ними число взаимодействий представляется бесконечным, и ученые все чаще используют машинное обучение, чтобы понять и оценить мириады способов взаимодействия генов в пределах одной клетки.
Приложение ИИ к редактированию генома имеет особенно впечатляющие перспективы. Подразделение Microsoft — Microsoft Research — разработало алгоритмическое приложение Elevation, которое оказалось способным предсказывать неэффективные замены в человеческом геноме при попытках его редактирования: таким образом, это позволяет предсказать оптимальные места редактирования участков ДНК и проектирования РНК-носителей для редактирования CRISPR (эта аббревиатура обозначает фрагменты ДНК, или, более точно, «короткие палиндромные повторы, регулярно расположенные группами»). Этот алгоритм превзошел по эффективности другие алгоритмы CRISPR, при создании которых использовали глубокое обучение. Такие алгоритмы не только повышают точность результатов в экспериментальной биологии, но еще и играют ключевую роль во многих клинических испытаниях, в проведении которых уже используют систему CRISPR для редактирования генома (при таких заболеваниях, как гемофилия, серповидно-клеточная анемия и талассемия).
Вероятно, поэтому совсем не вызывает удивления, что распознавание изображений стало играть центральную роль в клеточном анализе (особенно если учитывать, что это одна из самых сильных сторон глубокого обучения): для сортировки формы, классификации типов, определения происхождения, идентификации редких клеток в крови или для различения мертвых и живых клеток. Внутренняя работа клеток— в центре внимания DCell, алгоритма глубокого обучения, который прогнозирует клеточный рост, взаимодействие генов и другие функции.
Рак — это геномная болезнь, поэтому ничего удивительного, что именно онкология особенно выигрывает от внедрения искусственного интеллекта. Помимо помощи в интерпретации данных о последовательностях ДНК в опухолевых клетках (что было проделано в отношении глиобластомы, злокачественной опухоли головного мозга), мы получили новые инструменты для познания генеза и биофизики злокачественных новообразований.
Данные о метилировании ДНК злокачественных опухолей оказались весьма полезным следствием применения ИИ в классификации опухолей в онкологии. Для диагностики опухолей головного мозга патологоанатомы традиционно пользуются гистологическими препаратами. Эта диагностика достаточно трудна: существует множество редких форм рака, которые создают патологоанатому большие проблемы, если он не видел их прежде; клетки опухоли представляют собой мозаику клеток разных типов; биопсия, как правило, не позволяет отобрать все клетки, которые присутствуют в ткани опухоли. Кроме того, визуальная оценка препарата неизбежно субъективна. В 2018 г. Дэвид Каппер и его коллеги по больнице Шарите (Берлин) изучили метилирование целостного генома в образцах опухолей: их исследование показало точность около 93 процента в классификации всех 82 типов злокачественных опухолей головного мозга, что значительно превосходит результаты патологоанатомов. Определяемая машиной степень метилирования ДНК привела к пересмотру классификации более 70 процентов маркированных людьми опухолей, а это означает изменение прогнозирования в отношении как исходов заболевания, так и тактики лечения. Эти данные найдут широкое применение и в биологических исследованиях рака, и в клинической практике.
С помощью искусственного интеллекта мы многое узнали об эволюции рака. Ученые смогли расшифровать скрытые сигналы эволюции раковой опухоли у 178 пациентов при помощи технологии переноса обучения, что серьезно повлияло на формирование прогноза относительно этих пациентов. Однако в современном мире, переполненном дешевой шумихой по поводу ИИ, этот факт представили на первой полосе британского таблоида Daily Express следующим образом: «Война роботов против рака». Инструменты искусственного интеллекта помогли обнаружить онкогенные соматические мутации и понять сложность взаимодействия генов клеток раковых опухолей.
Последний наглядный и поучительный пример изучения рака с помощью искусственного интеллекта — это его применение к комплексной биологической системе для предсказания малигнизации составляющих ее клеток. Используя в качестве модели головастиков лягушек, ученые вводили головастикам сочетание трех реагентов, чтобы выявить ту комбинацию, которая вызывает малигнизацию меланоцитов у некоторых головастиков и приводит к росту опухоли, подобной раковой. И хотя не у всех головастиков из этой популяции развилась опухоль, любопытно было другое — все меланоциты конкретного головастика вели себя одинаково: либо все становились злокачественными, либо все развивались нормально. Ученые попытались определить комбинацию реагентов, которая привела бы к возникновению промежуточных форм — когда только некоторые клетки организма становятся злокачественными.
Проведя несколько экспериментов для определения эталонов, авторы затем использовали модели искусственного интеллекта для проведения 576 виртуальных экспериментов, имитирующих эмбриональное развитие головастиков в условиях воздействия различных сочетаний реагентов. Все имитации, кроме одной, оказались неудачными. Однако в этом стоге сена была обнаружена иголка — с помощью алгоритмов искусственного интеллекта, на основе которых была создана модель, предсказавшая опухолеподобный фенотип, когда не все клетки развиваются одинаково. Модель впоследствии была верифицирована. Даниэль Лобо из Мэрилендского университета в округе Балтимор, автор исследования, заметил по этому поводу: «Даже при создании полной модели, описывающей точный механизм управления системой, человек не сумеет самостоятельно найти точную комбинацию лекарств, которые приведут к желаемому результату. Эта работа послужила доказательством того, как система ИИ может помочь нам точно определить меры, необходимые для получения конкретного результата».
Подробнее читайте:
Тополь, Э. Искусственный интеллект в медицине: Как умные технологии меняют подход к лечению \ ЭрикТополь ; Пер. с англ. [Александра Анваера] — М.: Альпина Паблишер, 2022. — 398 с., ил.
Источник
При использовании материалов с сайта активная ссылка на него обязательна
Меню
Архив материалов
Проекты наших читателей
Контакты исследователей
Подписка на новости
Проекты
Новости криптозоологии
Хроники природных катастроф
Новости
26.02.2002 - 05.07.2002
05.08.2002 - 23.10.2002 (562)
24.10.2002 - 17.01.2003 (585)
20.01.2003 - 07.04.2003 (709)
08.04.2003 - 01.08.2003 (709)
04.08.2003 - 18.11.2003 (763)
19.11.2003 - 31.03.2004 (721)
01.04.2004 - 13.08.2004 (825)
16.08.2004 - 22.11.2004 (782)
23.11.2004 - 28.03.2005 (756)
29.03.2005 - 29.07.2005 (807)
30.08.2005 - 02.12.2005 (927)
05.12.2005 - 21.04.2006 (912)
24.04.2006 - 23.10.2006 (999)
24.10.2006 - 03.05.2007 (999)
04.05.2007 - 28.01.2008 (999)
29.01.2008 - 12.01.2009 (999)
13.01.2009 - 07.07.2009 (966)
22.08.2009 - 21.01.2010 (996)
22.01.2010 - 22.06.2010 (1000)
23.06.2010 - 14.01.2011 (1042)
17.01.2011 - 31.05.2011 (1008)
01.06.2011 - 03.11.2011 (1003)
07.11.2011 - 16.03.2012 (996)
19.03.2012 - 09.06.2012 (1009)
13.06.2012 - 07.09.2012 (988)
10.09.2012 - 19.11.2012 (1004)
20.11.2012 - 14.01.2013 (1015)
15.01.2013 - 22.02.2013 (1000)
23.02.2013 - 08.04.2013 (991)
09.04.2013 - 31.05.2013 (1015)
01.06.2013 - 18.07.2013 (992)
19.07.2013 - 03.09.2013 (1014)
04.09.2013 - 20.10.2013 (1001)
21.10.2013 - 02.12.2013 (1001)
03.12.2013 - 18.01.2014 (997)
19.01.2014 - 07.03.2014 (994)
08.03.2014 - 24.04.2014 (1000)
25.04.2014 - 18.06.2014 (1005)
19.06.2014 - 15.08.2014 (1019)
16.08.2014 - 07.10.2014 (1006)
08.10.2014 - 16.11.2014 (995)
17.11.2014 - 25.12.2014 (1004)
26.12.2014 - 09.02.2015 (989)
10.02.2015 - 20.03.2015 (998)
21.03.2015 - 22.04.2015 (1001)
23.04.2015 - 29.05.2015 (997)
29.05.2015 - 30.06.2015 (995)
30.06.2015 - 29.07.2015 (990)
29.07.2015 - 26.08.2015 (998)
27.08.2015 - 24.09.2015 (988)
25.09.2015 - 22.10.2015 (991)
23.10.2015 - 18.11.2015 (1000)
18.11.2015 - 16.12.2015 (990)
17.12.2015 - 23.01.2016 (1000)
24.01.2016 - 25.02.2016 (1000)
26.02.2016 - 24.03.2016 (1000)
24.03.2016 - 16.04.2016 (990)
17.04.2016 - 19.05.2016 (999)
20.05.2016 - 22.06.2016 (993)
23.06.2016 - 01.08.2016 (995)
02.08.2016 - 12.09.2016 (990)
13.09.2016 - 25.10.2016 (989)
26.10.2016 - 05.12.2016 (995)
06.12.2016 - 15.01.2017 (995)
16.01.2017 - 23.02.2017 (990)
24.02.2017 - 03.04.2017 (994)
04.04.2017 - 18.05.2017 (1000)
19.05.2017 - 05.07.2017 (1000)
06.07.2017 - 24.08.2017 (1000)
25.08.2017 - 06.10.2017 (991)
07.10.2017 - 15.11.2017 (990)
16.11.2017 - 24.12.2017 (1000)
25.12.2017 - 04.02.2018 (990)
05.02.2018 - 17.03.2018 (1000)
18.03.2018 - 02.05.2018 (990)
03.05.2018 - 11.06.2018 (1000)
12.06.2018 - 18.07.2018 (990)
19.07.2018 - 24.08.2018 (1000)
25.08.2018 - 02.10.2018 (1000)
03.10.2018 - 07.11.2018 (990)
08.11.2018 - 13.12.2018 (990)
14.12.2018 - 23.01.2019 (1000)
24.01.2019 - 02.03.2019 (1000)
03.03.2019 - 12.04.2019 (1010)
13.04.2019 - 23.05.2019 (990)
24.05.2019 - 03.07.2019 (1000)
04.07.2019 - 11.08.2019 (1000)
12.08.2019 - 16.09.2019 (990)
17.09.2019 - 26.10.2019 (1000)
27.10.2019 - 12.12.2019 (1000)
13.12.2019 - 25.01.2020 (1000)
26.01.2020 - 06.03.2020 (990)
07.03.2020 - 16.04.2020 (1010)
17.04.2020 - 19.05.2020 (1000)
20.05.2020 - 25.06.2020 (990)
26.06.2020 - 04.08.2020 (995)
05.08.2020 - 16.09.2020 (1005)
17.09.2020 - 26.10.2020 (990)
27.10.2020 - 27.11.2020 (990)
28.11.2020 - 07.01.2021 (990)
08.01.2021 - 15.02.2021 (1000)
16.02.2021 - 31.03.2021 (1000)
01.04.2021 - 12.05.2021 (1000)
13.05.2021 - 14.06.2021 (990)
15.06.2021 - 26.07.2021 (980)
27.07.2021 - 31.08.2021 (990)
01.09.2021 - 07.10.2021 (1000)
08.09.2021 - 07.11.2021 (1000)
08.11.2021 - 10.12.2021 (1000)
11.12.2021 - 24.01.2022 (990)
25.01.2022 - 04.03.2022 (1000)
05.03.2022 - 10.04.2022 (990)
11.04.2022 - 17.05.2022 (1000)
18.05.2022 - 23.06.2022 (980)
24.06.2022 - 31.07.2022 (990)
01.08.2022 - 13.09.2022 (990)
14.09.2022 - 21.10.2022 (990)
22.10.2022 - 29.11.2022 (1000)
30.11.2022 - 22.01.2023 (1000)
23.01.2023 - 02.03.2023 (990)
03.03.2023 - 21.04.2023 (1000)
22.04.2023 - 13.06.2023 (990)
14.06.2023 - 02.08.2023 (1000)
03.08.2023 - 21.09.2023 (1000)
22.09.2023 - 06.11.2023 (990)
07.11.2023 - 24.12.2023 (990)
25.12.2023 - 18.02.2024 (1000)
19.02.2024 - 05.04.2024 (990)
06.04.2024 - 25.05.2024 (1000)
26.05.2024 - 26.07.2024 (1000)
26.07.2024 - 25.08.2024 (990)
26.08.2024 - 28.09.2024 (980)
29.09.2024 - 01.11.2024 (1000)
02.11.2024 - 02.12.2024 (980)
03.12.2024 - 08.01.2025 (990)
09.01.2025 - 09.02.2025 (1000)
10.02.2025 - 20.03.2025 (1000)
21.03.2025 - 03.05.2025 (990)
04.05.2025 - ...
Статьи
Статьи: раздел 1 (1024)
Статьи: раздел 2 (1006)
Статьи: раздел 3 (1000)
Статьи: раздел 4 (1044)
Статьи: раздел 5 (1001)
Статьи: раздел 6 (1000)
Статьи: раздел 7 (1000)
Статьи: раздел 8 (1013)
Статьи: раздел 9 (1000)
Статьи: раздел 10 (1000)
Статьи: раздел 11 (329)
Статьи: раздел 12 (1000)
Статьи: раздел 13 (730)
Лента новостей

Большого кота заметили в сумерках

Бортинженер НАСА рассказал об инопланетных технологиях

Маленький городок привлекает уфологов

Миллионы наушников можно превратить в жучки

Мозговой имплант Neuralink получили уже семь пациентов

Моя ночь в мотеле с привидениями и клоунами

Над США взорвался метеорит массой более тонны

Необычный НЛО, снятый в Колорадо

Неразгаданные головоломки

Неужели так наступит Конец света

Обнаружили затерянный египетский город

Правительство США скрывает связи с инопланетянами

Самые безумные традиции летнего солнцестояния

Самые опасные места для жизни в Великобритании

Создание реальных Франкенштейнов

Спутник заговорил после смерти в 1967 году

Существо, которое существует между жизнью и нежизнью

Человечество достигнет Сингулярности в течение 20 лет

Что было замечено в небе Нью-Гэмпшира

Я была набожной католичкой ... пока не умерла

Больше шансов обнаружить НЛО в Техасе

Бывший пилот истребителя чуть не столкнулся с НЛО

Всемирный день уфологов

Гигантский кальмар показал свое тайное лицо

Какими сверхспособностями будут обладать люди

Лже-копы пытались украсть сферообразный НЛО

Марк Цукерберг может превратить США в диктатуру

Мини-черные дыры могут скрываться в вашем доме

Мистификации, связанные с изменением климата

Пентагон фабриковал доказательства о НЛО

Повод задуматься о необъяснимых явлениях

Почему в 30 лет можно чувствовать себя на 60

Свидетельства очевидцев НЛО в США

Таинственный объект приближается к Вашингтону

Уфологи приписывают инопланетянам любые подвиги

Факты и история инцидента с НЛО в Розуэлле

Что было замечено в небе Иллинойса

Энтузиасты отмечают Всемирный день НЛО

ИИ ChatGPT выдает ответы на чужие запросы

Ключи к пониманию того как распространяется рак

Лишайники указали на обитаемость экзопланет

НЛО облучил радиацией жителя Канады

Очень массивные звезды выбрасывают еще больше вещества

Полеты звезд не изменили климат Земли

Роли аккреций в эволюции планет земной группы

Странное существо с вытянутой головой

Тайна озера Тахо

Японские хирурги удалили ребенку зуб из носа

Амбициозный законопроект по НЛО провалился

Города, в которых чаще всего видели НЛО

Звездообразный объект над Вашингтоном

Каковы шансы обнаружить НЛО в США

Конгресс США запретил сотрудникам пользоваться WhatsApp

Оружейные бароны прикрывались НЛО

Подводный аппарат обнаружил секретные сооружения

Призрачный шлейф, поднимающийся из мантии Земли

Разгадка тайны падающего объекта Массачусетса

Секретное оружие, которое может остановить слепоту

Сигарообразный аппарат пронёсся по марсианскому небу

Этим летом вращение Земли ускорится

Астрономы послушали 27 экзопланет на наличие ВЦ

Впервые нашли галактику из темной материи

Заночевавший в лесу охотник встретил инопланетян

Звездные вспышки могут помешать поиску жизни

ИИ может научиться разрабатывать биологическое оружие

Киберпсихологи впервые нашли способ усилить эмоции

Нейросети осознали, что их проверяют и вели себя примерно

Хирурги провели роботизированную пересадку сердца

Человек, который мог по желанию стать невидимым

Шестой пациент с мозговым имплантом Neuralink

Антигравитация - поехали

Важные секреты формирования планет

Вулкан поможет определить обитаемость Марса

Гигантская комета в облаке Оорта раскрывает свои секреты

Жизнь на Марсе - можно ли извлечь уроки

Исследования проливают свет на темную материю

Как органика выживает в экстремальных межзвездных условиях

Лунная пыль менее токсична, чем городское загрязнение

Нашли адрес пропавшей материи во Вселенной

Новая волна откровений от 'живого Нострадамуса'

Обнаружены три экзопланеты типа горячий Юпитер

От шпионажа до телепортации и антигравитации

Планетарная угроза Земле реальна

Планетообразующие диски теряют газ быстрее, чем пыль

Почему закаты зимой такие красивые

Почему США лидируют по количеству наблюдений НЛО

Прародитель всех метеорных потоков может угрожать Луне

Проблема, которую могут решить только квантовые вычисления

Пузырчатые мышцы помогут освоить космические полеты

Слияние двойной нейтронной звезды образовало черную дыру

Слои глины Марса были устойчивым местом для древней жизни

Китайский автобренд Foton. Надежность, универсальность и современные решения для бизнеса

Почему стоит посетить Казань. Культурное богатство, история и уникальная атмосфера

Выгоды установки микромаркета самообслуживания для бизнеса

Когда деньги ушли не туда. Как работает чарджбэк

Подвесной потолок Грильято - архитектурная революция коммерческих пространств

Американские военные заметили дискообразный НЛО

Борьба властей и уфологического сообщества

Бывший пилот истребителя чуть не столкнулся с НЛО

Дискообразный НЛО запечатлен американскими военными

Достоянием общественности стали кадры с НЛО

Загадочное мумифицированное кровососущее существо

ИИ стал экзистенциальной угрозой для СМИ

Нападение демонов на начальную школу

Невиданные ранее кадры с НЛО

Папа Римский объявил войну искусственному интелекту

Пилот истребителя ошеломлен тем, что увидел НЛО

Продвинутые модели ИИ будут хитрить, обманывать и воровать

Река в форме дракона - знак, оставленный рептилоидами

Родители поджигают имущество одержимого учителя

Ролик с китайской космостанции является поддельным

Секретная встреча китайских спутников

Фильм об НЛО вызвал волну сообщений о странной активности

Церковь присоединяется к исследованию НЛО

Череп, оставленный инопланетянами, на острове в Канаде

Я сталкиваюсь с инопланетянами каждый день

Какие навыки дают современные онлайн-школы IT помимо программирования

Был ли первобытный человек технически развит

Военное видео с НЛО вызвало споры

Всемирный потоп в греческой мифологии

Встреча англичанки со странным существом

Встреча с инопланетянами возле Кошенцина

Города Мичигана, в которых были замечены НЛО

Древние передовые знания ведических мудрецов

Жизнь на Марсе будет похожа на тюремное заключение

Информация и экспертные знания об НЛО

Инцидент на острове Мори будет обсуждаться в Розуэлле

Каково назначение загадочных Врат Богов

Летчик-истребитель видел НЛО

Магнитное поле странным образом управляет воздухом

Мы были не первой развитой цивилизацией на Земле

Наблюдения чудовищ в озере Лох-Несс

НЛО в древние времена

НЛО замечен на афгано-пакистанской границе

Пилот истребителя едва не столкнулся с НЛО

Почему йети до сих пор не обнаружены

Предсказания Леонардо да Винчи

Призрачные огни терроризируют бенгальских рыбаков

Просочившееся в сеть военное видео с НЛО

Самое популярное место НЛО в Австралии

Следы инопланетян на дне Балтийского моря

Собаку-призрака заметили в историческом здании Глостера

Странный объект снят в Китае

Странный прямоугольный НЛО заметил пилот истребителя

У людей есть ингредиенты для отращивания конечностей

Ученые обнаружили парадокс в эволюции

Черви доказали, что Дарвин ошибался

Астероид-убийца может столкнуться с Луной

Биомеханический НЛО над графством Суррей

Бывший пилот ВВС США описывает блестящий объект

Вся жизнь на Земле подчиняется одному правилу

Где чаще всего живут психопаты

Городская инфраструктура замечена на Марсе

Журналисты борются с сокрытием информации о НЛО

Загадочная летающая тарелка в пустыне Сахара

Загадочный сигнал вырвался из глубин Антарктиды

ИИ может спровоцировать ядерный Армагеддон

ИИ подрывает навыки критического мышления

Инопланетяне развязали войну между Ираном и Израилем

Кто первым применит ядерное оружие

НЛО замечен над Массачусетсом

НЛО, меняющий форму, над Сакраменто

Новый ключ, который может раскрыть Пятую силу

Обнаружено недостающее вещество во Вселенной

Призрачный шлейф обнаружен под восточным Оманом

Причудливые и запутанные тайны из мира авиации

Свет имеет доступ к 37 различным измерениям

Скрытая закономерность сохранит ваши секреты

Странные сооружения под водой у острова Бали

Сферу Буга видели в Китае

Таинственные огни над Парагваем

Таинственные сигналы из Антарктиды

Тюрьма, населенная призраками

Фото инопланетян, опубликованные Пентагоном

Цилиндрический НЛО над Колорадо-Спрингс

Через 15 лет люди будут жить в оазисах на Марсе

Электронные письма Пентагон о НЛО

Voyah Dream и Free. Премиум без компромиссов

КамАЗ Компас. Важность и причины технического обслуживания

Changan. Премиум в движении - обзор моделей UNI-K, HUNTERplus

Обзор популярных моделей Haval. Jolion и Dargo

Гуанчи - последние потомки Атлантиды

Жюль Верн предсказал нечто похожее на интернет

ИИ отбирает рабочие места у айтишников

ИИ позволит колонизировать галактику через пять лет

Компания OpenAI вскрыла тёмные личности у ИИ

Наверх
Яндекс.Метрика