Откуда ИИ знает то, что никто ему не говорил
Редактор журнала Scientific American Джордж Массер — о том, почему модели ИИ, обученные повторять, как попугаи, тексты из интернета, оказываются способны решать совершенно новые для них и весьма продвинутые задачи. Никто не может сейчас сказать, как изменится мир с распространением ChatGPT и других чат-ботов на основе искусственного интеллекта, поскольку никто на самом деле не знает, что происходит у них внутри. Возможности подобных систем выходят далеко за рамки того, чему их обучали, и даже их разработчики не могут понять, почему. Все большее число тестов показывает, что системы искусственного интеллекта создают внутри себя модели реального мира так же, как это делает человеческий мозг, только технология у машин иная. «Все наши попытки усовершенствовать их, сделать безопаснее и тому подобное кажутся мне смешными. Что мы можем сделать, если мы не понимаем, как они работают?» — говорит Элли Павлик из Университета Брауна. Она принадлежит к числу тех исследователей, которые пытаются восполнить этот недостаток знания.
До определенной степени она с коллегами понимает принцип работы и GPT (generative pre-trained transformer, генеративный предварительно обученный трансформер), и других LLM (Large Language Models, большие языковые модели). Эти модели основаны на системе машинного обучения, называемой нейронной сетью. Такие сети имеют структуру, организованную по образцу связанных между собой нейронов человеческого мозга. Код этих программ относительно прост и занимает всего несколько экранов. Он устанавливает алгоритм автокоррекции, который выбирает самое подходящее слово для завершения некоторой фразы на основе кропотливого статистического анализа сотен гигабайт интернет-текстов. Дополнительное обучение позволяет системе представлять результаты в форме диалога. В этом смысле все, что она делает, — извергает то, что в нее заложили. Это «стохастический попугай», по выражению Эмили Бендер, лингвиста из Вашингтонского университета. Но при этом LLM удалось сдать экзамен на адвоката, написать сонет о бозоне Хиггса, признаться в любви одному из своих собеседников и даже попытаться принудить его к разводу. Мало кто ожидал, что простой алгоритм автокоррекции обретет такие разносторонние способности.
Тот факт, что GPT и другие системы искусственного интеллекта выполняют задачи, к которым их не готовили, проявляя свои «новоприобретенные способности», впечатлил даже тех исследователей, которые прежде не разделяли восторгов по поводу LLM. «Я не знаю, как это у них получается, и насколько их способ действий похож на человеческий, но они заставили меня пересмотреть мои взгляды», — говорит Мелани Митчелл, эксперт по ИИ из Института Санта-Фе. «Это, конечно, нечто большее, чем стохастический попугай, и он, конечно, создает внутри себя некоторое представление о мире — но я не думаю, что это похоже на то, как это делают люди», — говорит Йошуа Бенджио, исследователь ИИ в Монреальском университете.
На конференции в Нью-Йорке в этом году философ из Колумбийского университета Рафаэль Мильер привел еще один поразительный пример того, на что способны LLM. Они уже демонстрировали умение писать компьютерный код, что, конечно, производит впечатление, но не сказать чтобы сильное, поскольку в Интернете достаточно кодов, которые можно сымитировать. Но Мильер пошел дальше. Он показал, что GPT может также выполнять код. Философ ввел программу для вычисления 83-го числа Фибоначчи. «Это многоэтапное действие очень высокого уровня», — говорит он. И бот справился с задачей. Но когда Мильер запросил 83-е число Фибоначчи напрямую, GPT ошиблась, а это значит, что система не просто копирует интернет. Скорее всего модель производила собственные вычисления, чтобы получить ответ.
LLM работает на компьютере, однако сама языковая модель это не компьютер. Ей недостает некоторых важных элементов, в частности оперативной памяти. По сути косвенно признавая, что GPT сама по себе не способна запускать код, ее разработчик, технологическая компания OpenAI, представила специализированный плагин (инструмент, который ChatGPT может использовать при ответе на определенные запросы), позволяющий ей это делать. Однако этот плагин не использовался в эксперименте Мильера. Поэтому он выдвигает гипотезу, что машина сымпровизировала память, используя ее механизмы для интерпретации слов в соответствии с контекстом. Подобно тому, как природа переназначает уже наличествующие способности для выполнения новых функций.
Это непредвиденное умение говорит о том, что LLM развивают внутреннюю сложность, которая не ограничивается поверхностным статистическим анализом. Эти системы, похоже, начинают по-настоящему осознавать то, чему они научились. Для одного из исследований докторант Кеннет Ли из Гарвардского университета и его коллеги-специалисты по ИИ создали свою собственную уменьшенную копию нейронной сети GPT, чтобы изучить ее внутреннюю работу. Они тренировали ее на миллионах партий настольной игры illustration demonstrating the capabilities of ChatGPT in online courses and distance learning.illustration demonstrating the capabilities of ChatGPT in online courses and distance learning.«Отелло» (разновидность «Реверси») путем представления в текстовой форме длинных последовательностей ходов. Их модель стала почти идеальным игроком.
Чтобы понять, как нейронная сеть кодирует информацию, они применили метод, разработанный в 2016 году Йошуа Бенджио и Гийомом Аленом из Монреальского университета. Команда создала миниатюрную «зондовую» сеть, которая анализировала основную сеть слой за слоем. Ли сравнивает этот подход с методами нейробиологии. «Это как поместить исследовательский зонд в человеческий мозг», — говорит он. В случае с ИИ исследование показало, что хотя систему учили прогнозировать только следующий ход, ее «нейронная активность» простиралась на все игровое поле, представленное, правда, в несколько искаженной форме. Чтобы убедиться в этом, исследователи нарушали ход игры, внедряя информацию в сеть, — например, переворачивали одну из черных фишек белой стороной вверх. И сеть соответствующим образом корректировала свои действия. «По сути, мы взламывали мозг этих языковых моделей», — говорит Ли. Исследователи пришли к выводу, что ИИ играл, в общем, как человек: держал игровое поле перед «мысленным взором» и использовал его образ для выбора следующего хода. По мнению Ли, система вырабатывает такой навык потому, что это самая экономичная форма для обучающих данных. «При наличии большого количества игровых сценариев лучший способ сжать их — постараться найти общее правило, которое лежит в их основе», — добавляет Ли.
Эта способность делать выводы о структуре внешнего мира касается не только расположения фишек в играх; она также проявляется в диалогах. Группа исследователей из Массачусетского технологического института изучала сети, играющие в текстовые приключенческие игры. Вводились такие предложения, как «Ключ в сундуке с сокровищами», «Вы берете ключ». С помощью зонда было установлено, что сети кодировали внутри себя переменные, соответствующие словам «сундук» и «вы», каждая из которых имела свойство обладать или не обладать ключом, и корректировали эти переменные с каждым новым предложением. У системы не было возможностей узнать, что такое сундук или ключ, но она уяснила концепции, необходимые для выполнения задачи. «Внутри модели имеется некоторое представление о состоянии», — говорит Белинда Ли из группы исследователей.
Можно только удивляться, как много информации LLM способны выуживать из текстов. Например, Элли Павлик и ее аспирантка Рома Патель обнаружили, что сети черпают в интернете описания цветов и создают свои внутренние представления о них. Когда они видят слово «красный», они воспринимают его не просто как абстрактный символ, а как понятие, имеющее отношение к бордовому, малиновому, фуксии, ржавчине и так далее. Продемонстрировать это было довольно трудно. Вместо того, чтобы помещать в сеть зонд, исследователи изучили ее реакцию на серию текстовых запросов. Чтобы проверить, не являются ли ее представления простым повторением цветовых отношений из онлайн-источников, они попытались ввести систему в заблуждение, сообщив ей, что красный на самом деле является зеленым. Система в ответ не стала транслировать устаревшую информацию, а должным образом пересмотрела соответствия между цветами и объектами.
Развивая идею о том, что для осуществления самокоррекции система ищет логику, лежащую в основе ее обучающих данных, исследователь в области машинного обучения Себастьен Бюбек из Microsoft Research предполагает, что чем шире поток этих данных, тем более общие правила система в них обнаруживает. «Возможно, мы наблюдаем такой технологический рывок потому, что при нынешнем разнообразии данных основополагающим принципом может быть только то, что их создали разумные существа, — говорит он. — И [у модели] есть только один способ объяснить все эти данные — стать разумной».
Однако LLM не только познают глубинные смыслы языка, но и учатся по ходу дела. В области искусственного интеллекта термин «обучение» обычно означает интенсивный процесс, в рамках которого разработчики прогоняют через нейронную сеть гигабайты данных и настраивают ее внутренние связи. Прежде чем пользователь начнет вводить в ChatGPT запросы, все эти процессы должны быть закончены; в отличие от человека, языковой модели не следует продолжать обучение. Поэтому для специалистов стало неожиданностью, что LLM совершенствуются, используя подсказки пользователей, — такая способность известна как контекстное обучение. «Это другой вид обучения, о нем никто даже не подозревал», — говорит Бен Герцель, основатель ИИ-компании SingularityNET.
Один из примеров того, как обучается LLM, вытекает из способа, которым люди взаимодействуют с чат-ботами типа ChatGPT. Системе можно дать понять, как вы хотите, чтобы она общалась с вами, и она подчинится. Ее реплики составляются из нескольких тысяч слов, которые она видела последними. Как использовать эти слова, предписывается ей фиксированными внутренними связями, но некоторая вариативность тем не менее предполагается. Целые веб-сайты посвящаются подсказкам, как «взломать» систему, — преодолеть ограничения, не позволяющие ей рассказывать пользователям, например, как сделать бомбу, — обычно путем подачи указания притвориться системой без ограничений. Кто-то производит взлом в корыстных целях, кто-то для получения более мудреных ответов. «Модель ответит на сложные вопросы, так сказать, лучше, чем если бы ее просто спросили напрямую, без подсказки о взломе», — говорит Уильям Хан, содиректор Лаборатории машинного восприятия и когнитивной робототехники Флоридского атлантического университета.
Другой тип контекстного обучения осуществляется посредством подсказок по цепочке рассуждений. Сеть просят проговаривать каждый шаг своих рассуждений — такая тактика позволяет успешнее решать логические и арифметические задачи, требующие нескольких шагов. (Пример Мильера особенно удивителен, поскольку сеть нашла число Фибоначчи без какой-либо подобной подготовки.)
В 2022 году команда Google Research и Швейцарского федерального технологического института в Цюрихе — Йоханнес фон Освальд, Эйвинд Никлассон, Этторе Рандаццо, Жуан Сакраменто, Александр Мордвинцев, Андрей Жмогинов и Макс Владимиров — показали, что контекстное обучение основано на том же алгоритме, что и стандартное обучение, известное как градиентный спуск. Эта процедура не была запрограммирована; система нашла ее самостоятельно. «Это, должно быть, приобретенный навык», — говорит Блез Агуэра-и-Аркас, вице-президент Google Research. Он считает, что у LLM могут быть и другие скрытые способности. «Каждый раз, когда мы проверяем их на наличие новой способности, которую можно количественно измерить, мы ее обнаруживаем», — говорит он.
У LLM еще достаточно много слепых пятен, не позволяющих квалифицировать эти модели как общий искусственный интеллект, или ОИИ (термин, обозначающий машину, которая поднимается до уровня возможностей мозга живых существ). GPT-4 иногда дает пристрастные ответы, иногда бывает подвержена галлюцинациям, то есть выдает за правду свои собственные фантазии. Галлюцинации могут иметь конкретные последствия для людей в реальном мире. Это уже вызывало проблемы. В одном случае GPT необоснованно обвинила профессора права в Калифорнии в сексуальных домогательствах к студенту. В подтверждение своих обвинений языковая модель даже процитировала новостную статью, которой на самом деле не существует. А некий житель Австралии планирует подать в суд на ChatGPT, потому что чат-бот объявил, что этот мужчина был якобы приговорен к тюремному заключению за получение взяток.
Вместе с тем новые способности языковых моделей позволяют исследователям предположить, что технологические компании ближе к созданию ОИИ, чем предполагали даже оптимисты. «Эти способности косвенно свидетельствует о том, что мы, вероятно, не так уж далеки от ОИИ», — заявил Бен Герцель на конференции по глубокому обучению во Флоридском атлантическом университете. Плагины OpenAI придали ChatGPT модульную архитектуру, отчасти напоминающую архитектуру человеческого мозга. «Объединение GPT-4 (последняя версия LLM, лежащая в основе ChatGPT) с различными плагинами может стать путем к специализации функций, похожей на человеческую», — говорит исследователь Массачусетского технологического института Анна Иванова.
Однако исследователи обеспокоены тем, что могут лишиться возможности изучать эти системы. OpenAI не разглашает подробностей разработки и обучения GPT-4, в частности потому, что ей приходится конкурировать с Google и другими компаниями и странами. Это не только вредит исследованиям, но и препятствует пониманию социальных последствий внедрения ИИ. «Прозрачность этих моделей — самое важное условие обеспечения безопасности», — говорит Мелани Митчелл из Института Санта-Фе.
Немного ранее в этом году Илон Маск, Стив Возняк и ряд ведущих ученых в области ИИ (всего более тысячи человек) в открытом письме призвали к паузе в разработке ИИ, утверждая, что мощные системы следует развивать лишь тогда, когда есть уверенность, что последствия их внедрения будут положительными, а риски управляемыми. Эксперты по этике ИИ в ответ заметили, что подобные утверждения на самом деле только создают шумиху, приписывая технологиям сверхъестественную мощь. Они считают, что исследователям лучше просто сосредоточиться на решении текущих задач, например, повысить прозрачность обучающих данных, предоставлять четкую информацию о том, как галлюцинации влияют на надежность таких моделей, как GPT-4, и следить за тем, чтобы на модели, с которыми мы взаимодействуем напрямую, например ChatGPT или Bard от Google, перед публикацией устанавливались защитные ограничения.
Источник
При использовании материалов с сайта активная ссылка на него обязательна
Меню
Архив материалов
Проекты наших читателей
Контакты исследователей
Подписка на новости
Проекты
Новости криптозоологии
Хроники природных катастроф
Новости
26.02.2002 - 05.07.2002
05.08.2002 - 23.10.2002 (562)
24.10.2002 - 17.01.2003 (585)
20.01.2003 - 07.04.2003 (709)
08.04.2003 - 01.08.2003 (709)
04.08.2003 - 18.11.2003 (763)
19.11.2003 - 31.03.2004 (721)
01.04.2004 - 13.08.2004 (825)
16.08.2004 - 22.11.2004 (782)
23.11.2004 - 28.03.2005 (756)
29.03.2005 - 29.07.2005 (807)
30.08.2005 - 02.12.2005 (927)
05.12.2005 - 21.04.2006 (912)
24.04.2006 - 23.10.2006 (999)
24.10.2006 - 03.05.2007 (999)
04.05.2007 - 28.01.2008 (999)
29.01.2008 - 12.01.2009 (999)
13.01.2009 - 07.07.2009 (966)
22.08.2009 - 21.01.2010 (996)
22.01.2010 - 22.06.2010 (1000)
23.06.2010 - 14.01.2011 (1042)
17.01.2011 - 31.05.2011 (1008)
01.06.2011 - 03.11.2011 (1003)
07.11.2011 - 16.03.2012 (996)
19.03.2012 - 09.06.2012 (1009)
13.06.2012 - 07.09.2012 (988)
10.09.2012 - 19.11.2012 (1004)
20.11.2012 - 14.01.2013 (1015)
15.01.2013 - 22.02.2013 (1000)
23.02.2013 - 08.04.2013 (991)
09.04.2013 - 31.05.2013 (1015)
01.06.2013 - 18.07.2013 (992)
19.07.2013 - 03.09.2013 (1014)
04.09.2013 - 20.10.2013 (1001)
21.10.2013 - 02.12.2013 (1001)
03.12.2013 - 18.01.2014 (997)
19.01.2014 - 07.03.2014 (994)
08.03.2014 - 24.04.2014 (1000)
25.04.2014 - 18.06.2014 (1005)
19.06.2014 - 15.08.2014 (1019)
16.08.2014 - 07.10.2014 (1006)
08.10.2014 - 16.11.2014 (995)
17.11.2014 - 25.12.2014 (1004)
26.12.2014 - 09.02.2015 (989)
10.02.2015 - 20.03.2015 (998)
21.03.2015 - 22.04.2015 (1001)
23.04.2015 - 29.05.2015 (997)
29.05.2015 - 30.06.2015 (995)
30.06.2015 - 29.07.2015 (990)
29.07.2015 - 26.08.2015 (998)
27.08.2015 - 24.09.2015 (988)
25.09.2015 - 22.10.2015 (991)
23.10.2015 - 18.11.2015 (1000)
18.11.2015 - 16.12.2015 (990)
17.12.2015 - 23.01.2016 (1000)
24.01.2016 - 25.02.2016 (1000)
26.02.2016 - 24.03.2016 (1000)
24.03.2016 - 16.04.2016 (990)
17.04.2016 - 19.05.2016 (999)
20.05.2016 - 22.06.2016 (993)
23.06.2016 - 01.08.2016 (995)
02.08.2016 - 12.09.2016 (990)
13.09.2016 - 25.10.2016 (989)
26.10.2016 - 05.12.2016 (995)
06.12.2016 - 15.01.2017 (995)
16.01.2017 - 23.02.2017 (990)
24.02.2017 - 03.04.2017 (994)
04.04.2017 - 18.05.2017 (1000)
19.05.2017 - 05.07.2017 (1000)
06.07.2017 - 24.08.2017 (1000)
25.08.2017 - 06.10.2017 (991)
07.10.2017 - 15.11.2017 (990)
16.11.2017 - 24.12.2017 (1000)
25.12.2017 - 04.02.2018 (990)
05.02.2018 - 17.03.2018 (1000)
18.03.2018 - 02.05.2018 (990)
03.05.2018 - 11.06.2018 (1000)
12.06.2018 - 18.07.2018 (990)
19.07.2018 - 24.08.2018 (1000)
25.08.2018 - 02.10.2018 (1000)
03.10.2018 - 07.11.2018 (990)
08.11.2018 - 13.12.2018 (990)
14.12.2018 - 23.01.2019 (1000)
24.01.2019 - 02.03.2019 (1000)
03.03.2019 - 12.04.2019 (1010)
13.04.2019 - 23.05.2019 (990)
24.05.2019 - 03.07.2019 (1000)
04.07.2019 - 11.08.2019 (1000)
12.08.2019 - 16.09.2019 (990)
17.09.2019 - 26.10.2019 (1000)
27.10.2019 - 12.12.2019 (1000)
13.12.2019 - 25.01.2020 (1000)
26.01.2020 - 06.03.2020 (990)
07.03.2020 - 16.04.2020 (1010)
17.04.2020 - 19.05.2020 (1000)
20.05.2020 - 25.06.2020 (990)
26.06.2020 - 04.08.2020 (995)
05.08.2020 - 16.09.2020 (1005)
17.09.2020 - 26.10.2020 (990)
27.10.2020 - 27.11.2020 (990)
28.11.2020 - 07.01.2021 (990)
08.01.2021 - 15.02.2021 (1000)
16.02.2021 - 31.03.2021 (1000)
01.04.2021 - 12.05.2021 (1000)
13.05.2021 - 14.06.2021 (990)
15.06.2021 - 26.07.2021 (980)
27.07.2021 - 31.08.2021 (990)
01.09.2021 - 07.10.2021 (1000)
08.09.2021 - 07.11.2021 (1000)
08.11.2021 - 10.12.2021 (1000)
11.12.2021 - 24.01.2022 (990)
25.01.2022 - 04.03.2022 (1000)
05.03.2022 - 10.04.2022 (990)
11.04.2022 - 17.05.2022 (1000)
18.05.2022 - 23.06.2022 (980)
24.06.2022 - 31.07.2022 (990)
01.08.2022 - 13.09.2022 (990)
14.09.2022 - 21.10.2022 (990)
22.10.2022 - 29.11.2022 (1000)
30.11.2022 - 22.01.2023 (1000)
23.01.2023 - 02.03.2023 (990)
03.03.2023 - 21.04.2023 (1000)
22.04.2023 - 13.06.2023 (990)
14.06.2023 - 02.08.2023 (1000)
03.08.2023 - 21.09.2023 (1000)
22.09.2023 - 06.11.2023 (990)
07.11.2023 - 24.12.2023 (990)
25.12.2023 - 18.02.2024 (1000)
19.02.2024 - 05.04.2024 (990)
06.04.2024 - 25.05.2024 (1000)
26.05.2024 - 26.07.2024 (1000)
26.07.2024 - 25.08.2024 (990)
26.08.2024 - 28.09.2024 (980)
29.09.2024 - 01.11.2024 (1000)
02.11.2024 - 02.12.2024 (980)
03.12.2024 - 08.01.2025 (990)
09.01.2025 - 09.02.2025 (1000)
10.02.2025 - 20.03.2025 (1000)
21.03.2025 - 03.05.2025 (990)
04.05.2025 - ...
Статьи
Статьи: раздел 1 (1024)
Статьи: раздел 2 (1006)
Статьи: раздел 3 (1000)
Статьи: раздел 4 (1044)
Статьи: раздел 5 (1001)
Статьи: раздел 6 (1000)
Статьи: раздел 7 (1000)
Статьи: раздел 8 (1013)
Статьи: раздел 9 (1000)
Статьи: раздел 10 (1000)
Статьи: раздел 11 (329)
Статьи: раздел 12 (1000)
Статьи: раздел 13 (730)
Лента новостей

База инопланетян в кратере Лаут на Марсе

Видел ли Дональд Трамп НЛО

Древние постройки обнаружили на Меркурии

Завод по производству лунного кирпича

Загадочная комета, прилетевшая из другой системы

НАСА изучает загадочную межзвездную комету

Научились превращать ртуть в золото

НЛО заметили над штатом Нью-Джерси

НЛО наблюдает за семьей в Индии

НЛО оставляет дымный след над Невадой

Обнаружена самая массивная черная дыра

Обнаружены первые звезды Вселенной

Существуют четыре различных вида инопланетян

США используют технологии инопланетян

Таинственный гигант, скрывающийся за черными дырами

Три фигуры появляются на Солнце

Удивительный полет к черной дыре

Федеральный советник по науке призывает изучать НЛО

Экзопланета у ближайшей солнцеподобной звезды

Экзотические вихри на картине 'Звездная ночь'

Гигантский пузырь звезды-сверхгиганта удивляет

Когда марсианский грунт распадется на части

Космическая гонка касается не только крупных стран

Криптотерриториальная гипотеза

Литологические особенности ландшафта Марса

Молодая звезда начинает взрываться

НАСА спешит разместить ядерные реакторы на Луне и Марсе

НАСА ускоренно разрабатывает лунный реактор

Недавние вулканические и термальные изменения на Марсе

Поиск жизни на Марсе был явной целью астросообщества

Почему кабинет Трампа дает разные ответы о НЛО

С помощью ChatGPT пишется все больше научных статей

Самая ранняя черная дыра во Вселенной

Свидетельства о кровавом ритуале на Туринской плащанице

Столкновение облаков приводит к вездообразованию

Тайна Бермудского треугольника раскрыта

Тайны космического винограда

Тайны протопланетных дисков

Что нужно знать о Лох-Несском чудовище

Шестеро преемников могли бы исследовать Марс

Бесконечная зима в Европе все ближе

Библейские руины - ключ к тайне Ковчега завета

Библейское море становится кроваво-красным

Власти США знают о четырех расах инопланетян

Изображение Плащаницы сделано со скульптуры

Конгрессмен рассказал об инопланетянах

Миру следует разработать политику в области НЛО

На Марсе нашли совершенно новый минерал

Наблюдение за НЛО в Уилтшире

Новые подсказки в поисках Восьмого чуда

Обнаружена экзопланета в обитаемой зоне Альфы Центавра

Популярные места для наблюдения НЛО в США

Страх охватил деревни в Австралии из-за НЛО

Существо в реке Хан в Сеуле стало вирусным

Тайна Атлантиды становится все более загадочной

Тайна человеческого сердца Леонардо да Винчи

Тулси Габбард возрождает теорию заговора о НЛО

Ученые предсказывают Конец света

Центр изучения НЛО открывает набор учителей

Что означает интерес Джей Ди Вэнса к НЛО

Безумный план посетить черную дыру

Загадочные временные явления в тени Земли

Загадочный межзвездный обьект - инопланетный корабль

Закрыли изучавший телепортацию институт МГУ

Заметили облако в форме рестлера Халка Хогана

Затонувший город расскажет о Ноевом ковчеге

Межзвездная экспедиция к черной дыре

Межзвездный объект имеет разумный дизайн

Мрачное предупреждением о 15 годах антиутопии

НЛО сняли в холмах Малверн

Новое открытие в Туринской плащаницы

Новый вид физики, не виданный ранее

Новый окрас кошек противоречит генетическим ожиданиям

Пилот уверен, что нашел самолет Амелии Эрхарт

Признаки древней жизни на Красной планете

Самое странное кольцо Сатурна

Суперинтеллект роботов может привести к Апокалипсису

Существуют другие видео маневров НЛО у Нимица

Сфера Буга - часть скрытой планетарной сети

Таинственные шары требуют научного изучения

Мраморные памятники фото и цена

Автомобилист принял телескоп за НЛО

Великая пирамида на тысячелетия старше фараонов

Вера в возможность существования внеземной жизни

Давайте сохраним Луну

Директор национальной разведки рассказала о НЛО

Доказательство приземления НЛО тысячи лет назад

ИИ ChatGPT превратили в похитителя данных

ИИ вскоре получит контроль над ядерным оружием

Инопланетный зонд нужно изучить

Инопланетяне живут рядом с нами

Направляясь к системе Проксимы Центавра

Огромный подводный город недалеко от Ноева ковчега

Орбита - игровая площадка для миллиардеров

Планеты-изгои могут образовывать планетные системы

Познакомьтесь с черными дырами среднего размера

Путешествие к экзопланете может занять 250 лет

Суперсталь выведет термоядерный синтез на новый уровень

Там могут быть инопланетяне

Теории о происхождении темной материи

Футуристический корабль для полета к звездам

Безумная теория астрофизика

Бесследное исчезновение самолета у Австралии

Взгляните на индонезийский фестиваль НЛО

Все люди могут быть пришельцами с Марса

Деревушка в Шотландии - столица НЛО Великобритании

Зеленый НЛО, похожий на кальмара, над Далласом

Кто первым построит ядерный реактор на Луне

Люди развили две ноги не для того, чтобы бегать

Металлический шар над вулканом в Мексике

Мужчина установил связь с умершим сыном

Нечто в доме приставало по ночам к девочкам

НЛО оказался зеркалом телескопа

НЛО потерпел крушение у Стокгольма

Стоит ли бояться приближающейся кометы

Странное лицо на горе в Чили

Страшное предупреждение Хокинга об НЛО

Таинственный межзвездный объект неестественен

Уфологи пытаются реформировать Великобританию

Хокинг нас предупреждал

Хронология Великой пирамиды не верна

Перепланировка нежилого помещения. Законность и порядок действий

Библейское предупреждение о конце света

Вращение Земли таинственным образом ускорилось

Загадочное лицо на вершине горы в Чили

ИИ самостоятельно обнаружил уязвимости в ПО

Конгрессмена проинформировали об инопланетянах

Консультация, данная разоблачителю Дэвиду Грушу

Криптозоолог занялся политикой

Лох-Несское чудовище выглядит иначе

НЛО вызвали переполох в Индии

Отпечаток пальца библейского персонажа

Повернуть время вспять и стереть ошибки

Провал ключевой для колонизации Луны миссии

Связь между депрессией и датой рождения

США намерены оккупировать Луну

Теория о подозрительной активности в космосе

Трюк с квантовой запутанностью

Уфолог ушел в политику

Уфологи обнаружили базу инопланетян

Фильм 'Пришельцы в Америке - дело Паскагулы'

Экзопланеты подсказали размер и состав Планеты Х

Aвcтpaлийcкaя aнoмaльнaя зoнa нaпoминaeт o ceбe

Будущее астрономии на Луне

Вирусное видео с НЛО над Далласом

Вице-президент США хочет исследовать феномен НЛО

Внутри человека скрывается новая форма жизни

Джей Ди Вэнс рассказал о тайне НЛО

Инопланетян заметили над Далласом

Истинное предназначение Туринской плащаницы

Как напрямую обнаружить темную материю

Когда пространство становится временем

Нейтрино и темная материя

Обнаружение Земли-2 имеет решающее значение

Предупреждение Хокинга об инопланетянах и НЛО

Приземление зонда инопланетян на Земле назвали бредом

Туринская плащаница не была положена на Иисуса

Туринская плащаница соответствует барельефу статуи

Человечество скоро достигнет своего пика

Что происходит непосредственно перед ударом молнии

Эволюция древних библейских рукописей

Я заночевала в призрачном пабе Уэльса

Помощь при запое. Как работает детоксикация организма

Американская общественность узнает об НЛО

Вице-президент США Джей Ди Вэнс одержим НЛО

Власти США очарованы неопознанными летающими объектами

Возникновение жизни оказалось более сложным

Джей Ди Вэнс планирует докопаться до сути НЛО

Жители Венеции покупают остров с привидениями

Замаскированный звездолет пришельцев все ближе

НАСА выявляет пробелы в науке об экзопланетах

НЛО замечен над Австралией

Новый метод расчета вибраций черных дыр

Правительство США расскажет о Зоне 51

Рыбак заметил огромное существо в реке Хан

Свидетель НЛО стал заместителем министра ВВС США

Семь безумных теорий заговора

Странное существо возле дома в Комптоне

Страшное предсказание Стивена Хокинга

Ученики школы Мохарчерра увидели привидение

Чилийские ученые запечатлели НЛО

Является ли 3I/ATLAS инопланетной технологией

Японская Ванга предсказала землетрясение много лет назад

Выяснили, что делает ИИ злым

Духи и демоны, ведьмы и колдуны и загробный мир

Женщина родила, несмотря на узел на пуповине

Наверх
Яндекс.Метрика