Заменит ли нас искусственный интеллект
|
Из объекта интереса фантастической литературы искусственный интеллект превратился в часть повседневной реальности. Системы ИИ внедряется не только в комплексных роботов, но вообще везде: в смартфоны, автомобили, пылесосы, социальные сети и стриминговые сервисы. Неизменными, однако, остались вопросы, которыми в связи с этим задается человечество. Как близко мы подобрались к реальности, в которой будет доминировать ИИ? Как внедрение искусственного интеллекта преобразует человеческое общество? Наконец, возможно ли, что ИИ вытеснит людей и возьмет контроль над миром? |
Подробный обзор существующих ответов и предположений можно найти в книге нейробиолога Шелли Фэн «Заменит ли нас искусственный интеллект?», выходящая в рамках издательского проекта «А+А» — совместного проекта Ad Marginem и ABCdesign и переведенная на русский язык Натальей Рыбалко и Анастасией Суслопаровой. N + 1 предлагает своим читателям ознакомиться с отрывком о том, как появление сверхразумного ИИ ограничивается уровнем развития современных компьютерных микросхем, и какие технологические новинки способны это препятствие устранить. |
![]() |
Будущее ИИ |
И пусть история не дает однозначного ответа на вопрос, поднимется ли когда-нибудь ИИ на уровень человека, значительное число исследователей, философов и футурологов полагает, что универсальный ИИ ждет нас в ближайшем будущем. Идея технологической сингулярности, которую популяризовал Рэй Курцвейл в бестселлере «Сингулярность уже близко: когда люди выйдут за пределы биологии», предсказывает момент, когда ИИ достигнет уровня человеческого разума. Это замечательное достижение, в свою очередь, моментально спровоцирует развитие сверхразумного ИИ, что приведет к изменениям человеческой цивилизации, которые не поддаются нашему пониманию и прогнозированию. |
Сверхразумный ИИ. Гипотетически возможный ИИ, превосходящий человеческий разум практически в любой сфере: научное творчество, рассуждения общего характера, интуиция. На сегодня возможность создания систем сверхразумного ИИ — вопрос дискуссионный. |
Сторонники теории сингулярности придерживаются разных мнений по поводу последствий такого тектонического сдвига, однако и те и другие считают, что горизонт события уже близок. Не так давно была проведена серия опросов, в которых экспертов, исследующих ИИ, спрашивали, когда, по их мнению, машинный разум сравняется с человеческим, при условии что текущая скорость технического прогресса сохранится. В среднем, по их оценкам, вероятность, что это случится к 2022 году, составляет 10 %, а вероятность, что к 2040 году, — 50 %. К 2075 году это событие рассматривается как почти неизбежное (90-процентная вероятность). Следующий вопрос был о сроке, за который сформируется сверхразумный ИИ после появления универсального интеллекта, и 75 % опрошенных оценили этот срок в 30 лет. Другими словами, есть основания ожидать, что во второй половине этого столетия мы станем свидетелями сингулярности. |
Обратите внимание, что ключевое допущение в оценках экспертов — это сохранение существующей скорости развития технологий. До сих пор компьютерные мощности росли в геометрической прогрессии. За последние пять десятилетий производительность компьютерных микросхем значительно выросла — этот феномен впервые заметил сооснователь компании Intel Гордон Мур (род. 1929). До сих пор индустрия микропроцессоров развивалась согласно прогнозу Мура, но сейчас появились признаки, что мы приближаемся к критическому моменту. Специалисты корпорации Intel в 2016 году спрогнозировали, что кремниевые транзисторы продолжат уменьшаться в размерах только в течение следующих пяти лет. |
Поскольку Intel поставляет серверные процессоры для Google и Microsoft, замедление развития аппаратного оборудования резко сократит возможности для разработки универсального ИИ. Уже замечено, что в последние несколько лет прогресс мировых суперкомпьютеров перестал ускоряться, и это говорит о том, что эти мощные машины уже ощущают на себе постепенный упадок закона Мура. |
Закон Мура. Возник на основе сделанного Гордоном Муром в 1965 году наблюдения, что с каждым годом в одной интегральной микросхеме будет помещаться в два раза больше транзисторов. В 1975 году Мур скорректировал темп, указав, что количество транзисторов удваивается уже только каждые два года. |
Это неизбежное препятствие на пути прогресса стало причиной повышенного интереса, поскольку подразумевает пересмотр всей архитектуры компьютерных микросхем. |
Современные кремниевые процессоры (CPU и GPU) не оптимизированы для работы алгоритмов глубокого обучения. В последнее время производители работают над созданием нейроморфных процессоров. Эти процессоры обрабатывают данные с помощью электронных элементов, которые имитируют нейроны и синапсы человеческого мозга, образуя, по сути, искусственную нейронную сеть в аппаратной форме. |
Центральный процессор (CPU). Ключевой элемент компьютера, который обрабатывает данные во время работы компьютерных программ. |
Графический процессор (GPU). Специализированная электронная микросхема для обработки изображений. Может обрабатывать несколько блоков данных одновременно, тем самым сокращая время вычисления. |
Нейроморфный процессор обычно состоит из множества вычислительных ядер маленького размера. Как и биологический нейрон, каждое ядро обрабатывает данные, поступающие из разных источников, и объединяет информацию. Если сумма входящих сигналов достигает порогового значения, ядро генерирует выходной сигнал. Этот способ обработки данных принципиально отличается от сегодняшних компьютеров, у которых память и вычислительное устройство отделены друг от друга. У нейроморфных процессоров эти два блока составляют единое целое, что значительно сокращает потребление энергии. В отличие от существующих сейчас CPU, которые выполняют операции последовательно, нейроморфные вычислительные ядра могут образовывать паутинообразные сети, работающие в параллельном режиме. |
Компания IBM стала лидером в создании нейроморфных процессоров, когда в 2014 году в рамках программы DARPA SyNAPSE создала «когнитивный процессор» TrueNorth, который имеет структуру, отдаленно напоминающую структуру мозговой ткани. Процессор состоит из 5,4 миллиарда транзисторов и более 4000 нейросинаптических ядер. Несколько лет спустя IBM с успехом использовала материалы с фазовым переходом, чтобы имитировать паттерны срабатывания биологических нейронов. |
Материал с фазовым переходом. Материал, который может переходить из одного состояния в другое (твердое, жидкое и т. д.) под воздействием окружа ющей среды, например из-за изменения температуры. |
Благодаря использованию материалов с фазовым переходом команде разработчиков удалось уменьшить процессор до нанометровых размеров и придать ему способность мгновенно выполнять сложные вычисления, потребляя при этом очень мало энергии. В 2016 году в Принстонском университете возникла другая идея: полностью отказаться от использования электричества, а для питания нейроморфного процессора с множественными нейронами использовать фотоны. Целый ряд экспериментов показал, что нанофотонный процессор и глубокая искусственная нейронная сеть обучаются схожим образом, только первый делает это гораздо быстрее. На испытаниях по решению математических задач фотонная нейронная сеть продемонстрировала скорость почти в две тысячи раз выше, чем обычные компьютеры. |
Также были разработаны искусственные синапсы с использованием органического материала, который биологически совместим с человеческим мозгом. ENODe — электрохимическое нейроморфное органическое устройство, созданное Стэнфордским университетом и Сандийскими национальными лабораториями, — имитирует вычисления в биологических синапсах. Ожидается, что миниатюрная версия этого чипа сократит потребление энергии в несколько миллионов раз и будет способна напрямую соединяться с живым человеческим мозгом для создания более совершенных нейрокомпьютерных интерфейсов. |
Биологический синапс. Соединение между двумя нейронами в мозге, которое позволяет нейронам взаимодействовать друг с другом с помощью электрических или химических сигналов. |
Нейрокомпьютерный интерфейс. Система, которая напрямую соединяет ткани мозга с внешним электронным устройством — компьютером или протезом. Переводит электрические сигналы мозга в команды для компьютера и наоборот. |
Еще больше поражает возможность восстанавливать или расширять функции человеческого мозга с помощью внешнего или имплантированного электронного чипа. |
Экспериментальные образцы нейропротезов уже помогли парализованным пациентам снова начать ходить, а слепым — до некоторой степени восстановить зрение. Как правило, эти системы представляют собой комплект вживленных непосредственно в мозг электродов, которые записывают сигналы нейронов и передают их на внешний компьютер, анализирующий эти данные с помощью ИИ. Аналогичная система работает и в обратном направлении — данные об ощущениях, которые испытывает протезное устройство, посылаются обратно в мозг. |
Чтобы как можно меньше травмировать мозг хирургическим вживлением электродов, ученые немедленно принялись за разработку более компактных, безопасных и эффективных зондов, которые вводятся непосредственно в мозг для записи электрических сигналов. В 2016 году был разработан Neural Dust — крошечный, почти незаметный глазу беспроводной сенсорный датчик, активируемый при помощи ультразвука. Он устанавливается с минимальным повреждением тканей и стимулирует активность нейронов. Кроме того, для записи и воссоздания нейронных связей были разработаны специальные методики с применением магнитов. В 2017 году Илон Маск основал Neuralink — таинственную компанию, занимающуюся со зданием нового вида мозгового импланта под названием Neural Lace («нейронное кружево»). |
«Нейронное кружево». Сделанный из мелкоячеистой сетки мозговой имплант, который поддерживает беспроводную связь с компьютерами и по сигналу выделяет химические вещества. Гипотетически устройство способно лечить нейродегенеративные нарушения, в том числе болезнь Паркинсона, или соединять протез напрямую с мозгом так, что человек может двигать искусственной частью тела с помощью сигналов мозга. |
На текущий момент нет особых оснований полагать, что высшие функции мозга, такие как память или особенности характера могут храниться в имплантированной микросхеме, что не мешает ученым стремительно расшифровывать информацию, которая содержится в электрических сигналах мозга. И решающую роль в этом процессе сыграло внедрение технологий ИИ. В наши дни уже существуют технологии, которые могут приблизительно расшифровывать содержание снов или реконструировать лицо, основываясь на считывании активности мозга. |
Подробнее читайте: |
Фэн, Шелли. Заменит ли нас искусственный интеллект? / Шелли Фэн. [; Пер. с англ. Натальи Рыбалко и Анастасии Суслопаровой] — М. : Ад Маргинем Пресс, ABCdesign, 2019. — 144 с. : ил. — (The Big Idea). |
Источник |
При использовании материалов с сайта активная ссылка на него обязательна
|