Можно ли распознать жизнь на экзопланете
|
|
Недавно в ТрВ-Наука публиковалась дискуссия о вероятности зарождения жизни на подходящей планете. Это та вероятность, о которой можно теоретизировать, но которую нельзя измерить, покуда нам известен лишь один случай. Нужен хотя бы еще один, и тогда уже можно оценить эту вероятность с точностью до порядка величины. Разговоры на эту тему ведутся давно, этим, в частности, занимается наука под названием «астробиология». Обретет ли эта наука предмет наблюдения?
|
|
Исходя из данных космического телескопа «Кеплер», можно приблизительно оценить вероятное расстояние до ближайших землеподобных планет у солнцеподобных звезд. Это не простая оценка — она требует экстраполяции от короткопериодических планет (которые легко обнаруживаются) к длиннопериодическим (чей год сравним с земным), которых «Кеплер» почти не видел. Результат — около 15 или 20% звезд типа Солнца имеют землеподобные планеты в зоне обитаемости. Вероятное расстояние до ближайшей подобной планеты оказывается в пределах 20 световых лет.
|
|
Как убедиться, что на планете, находящейся дальше десяти световых лет от нас, есть жизнь? Конечно, искать ее признаки нужно прежде всего в атмосфере планеты. В принципе, можно изучать отраженный спектр (например, так называемый красный край в альбедо, связанный с хлорофиллом), но до его детектирования еще так далеко, что остановимся на искомых признаках в спектре поглощения атмосферы. Есть ли шанс увидеть признаки жизни в спектре поглощения света звезды атмосферой транзитной планеты? Или, что сложней, увидеть их в спектре собственного теплового излучения планеты? Эти признаки по-русски называются биомаркерами (что неудачно, поскольку есть пересечение с медицинским термином); в англоязычной литературе преобладает термин biosignature. Общеизвестный биомаркер — кислород, точнее, линии поглощения О2 или озона О3. Простой и неправильный ответ на вопрос «как обнаружить жизнь?» — зарегистрировать на экзопланете кислород и приписать его происхождение фотосинтезу.
|
|
Вот один из контрпримеров.
|
|
Кислород может образовываться при фотодиссоциации молекул воды. Легкий водород улетает в космос, тяжелый кислород остается. Если планета находится в зоне жизни агрессивного красного карлика, излучающего много рентгена и ультрафиолета, то диссоциировать может вся вода. Если воды изначально было достаточно, планета может оказаться с кислородной атмосферой с давлением 100 бар — как на Венере, только с кислородом вместо СО2. И какая там жизнь?
|
|
Есть и другие, не столь радикальные варианты высвобождения кислорода. Таким образом, казалось бы самый надежный биомаркер на самом деле совсем не безусловен и требует осторожного подхода. Есть и другие биомаркеры — метан (есть на Марсе и в огромном количестве на Титане), закись азота N2O и несколько других летучих соединений. Однако остановимся на кислороде — на Земле он самый заметный знак жизни: легко детектируется, сильно поглощает излучение в инфракрасной области, летучий, химически активный. В свое время при выборе частотного диапазона проекта космического интерферометра TPF (Terrestrial Planet Finder — Детектор планет земного типа) решили, что надо опираться на кислород, так как «для нормальной землеподобной планеты, расположенной в зоне обитания, О2 — надежный индикатор жизни» (DesMarios et al. 2002). С тех пор прошло много времени, проект TPF закрыли, а к кислороду в качестве биомаркера стали относиться с бо?льшим скепсисом. Дело в том, что есть процессы высвобождения кислорода, конкурирующие с фотосинтезом даже для планет в зоне обитаемости.
|
|
Землю страхует от фотолиза водяного пара так называемая холодная ловушка — зона с минимальной температурой в верхнем слое тропосферы. Там пар конденсируется и в конечном счете выпадает в виде осадков. В результате его концентрация в стратосфере становится почти на три порядка меньше. Без холодной ловушки пар достигает высот, облучаемых жестким ультрафиолетом, где молекула воды диссоциирует, водород улетает, а атом кислорода остается и сбивает с толку удаленного наблюдателя. По оценкам Wordsworth, Pierrehumbert (2013) этот процесс может нагнать до 0,15 бар кислорода. Дальше сам кислород создает холодную ловушку и фотолиз воды прекращается, но такого количества кислорода вполне достаточно, чтобы принять его за биогенный.
|
|
Чтобы холодная ловушка функционировала изначально, нужна фоновая атмосфера из устойчивого газа, который не способен конденсироваться или химически связываться. Лучший для этого газ — азот; годится и более редкий аргон. Поэтому, если мы видим много кислорода в атмосфере планеты в зоне обитаемости, прежде всего надо проверить, есть ли там азот. Это не так просто — молекула N2 не дает линий поглощения в видимом и инфракрасном диапазоне. Зацепиться можно за парные молекулы (N2)2, в некотором количестве присутствующие в азотной атмосфере. Но их вклад в поглощение не столь велик. Величину эффекта оценивали Schwieterman et al. (2015). Представление о результате дает рис. 2, где приведен смоделированный транзитный спектр Земли (как если бы наблюдать Землю на фоне Солнца) с азотом и без него. Эффект измерим, но для наблюдений с большого расстояния удручающе мал.
|
|
Впрочем, азот — весьма распространенный элемент. В Солнечной системе он доминирует в атмосферах Земли и Титана, а в толстой атмосфере Венеры азота в три раза больше, чем в земной. Видимо, когда-то Венера тоже имела азотную атмосферу. Это прочная молекула и к тому же достаточно тяжелая, поэтому азотная атмосфера устойчива. Так что недостаток азота при наличии воды и кислорода в атмосфере планеты — скорее патология, чем правило. Поэтому, если все-таки будет обнаружен кислород у планеты земного типа в зоне обитаемости, к этому стоит отнестись очень серьезно. Скорее всего, на планете есть и азот и холодная ловушка. Конечно, «отнестись серьезно» не значит «пить шампанское за открытие» — вполне возможно, что жизнь во Вселенной, особенно фотосинтезирующая жизнь, — гораздо более редкий феномен, чем абиогенный кислород у планеты в зоне жизни.
|
|
Есть и другие варианты высвобождения большого количества кислорода. Например, фотолиз СО2. Этот случай распознается по большому количеству СО2 в атмосфере. Если планета сухая, то подавляется основной сток кислорода — каталитическая рекомбинация углекислого газа. В этом случае в атмосфере не должно быть паров воды.
|
|
В целом, биомаркеры во главе с кислородом дают лишь указание: «Смотрите внимательней!». В приложение к биомаркеру нужен контекст — всё, что известно о планете и родительской звезде, всё, что можно выяснить с помощью моделей. В ближайшей перспективе добыть необходимый контекст будет непросто даже для транзитных планет, тем более у звезд класса G.
|
|
Кроме биомаркеров существуют и антибиомаркеры — детектируемые примеси в атмосфере, которые свидетельствуют о необитаемости планеты. Наиболее часто обсуждаемый — угарный газ СО — не потому, что он ядовит для человека (наоборот — хорошая пища для фотосинтезирующих организмов), а потому, что свидетельствует об отсутствии воды. СО легко идентифицируется в спектре поглощения атмосферы планеты. Но и здесь нет однозначности, например, Schwieterman et al. (2019) показали, как биосфера может производить CO в детектируемых количествах.
|
|
В целом надежды на скорое обнаружение жизни на экзопланетах довольно призрачны. Скорее всего, первыми будут исследованы атмосферы планет в зоне обитаемости красных карликов — их много, вероятность транзитов велика (и уже найдены близкие транзитные планеты), вклад поглощения атмосферой планеты на фоне звезды на два порядка выше, чем для пары Земля — Солнце. Возможно, там будут обнаружены биомаркеры, но как раз для планет у звезд класса М цена биомаркеров наименьшая. Именно у них интенсивней всего идет фотолиз воды и СО2, именно у них в ранней молодости звезды может идти катастрофический фотолиз, способный дать кислородную атмосферу превосходящую по толщине углекислотную венерианскую.
|
|
Транзитные планеты в зоне обитаемости звезд типа Солнца, вероятно, будут найдены на расстоянии порядка сотни световых лет (сейчас известно несколько штук на расстоянии больше тысячи световых лет). Исследование их атмосфер в принципе не безнадежно. Гораздо большие перспективы могли бы дать космические интерферометры с прямым наблюдением близких нетранзитных планет. Увы, соответствующие проекты закрыты. Но будем надеяться на прогресс методов наблюдения. Настанет время, когда начнутся серийные открытия близких аналогов Земли. Вот тогда и начнется погоня за биомаркерами!
|
|
А сейчас состояние дел можно подытожить следующим образом.
|
|
Надежных биомаркеров как таковых не существует.
|
|
Значение биомаркера (как и антибиомаркера) сильно зависит от контекста: тип звезды, интенсивность облучения планеты, ее масса, водяной пар, другие составляющие атмосферы.
|
|
Есть, пожалуй, один случай довольно надежного (но не стопроцентного) признака фотосинтезирующей жизни: землеподобная планета в зоне обитаемости звезды класса G с большим количеством атмосферного кислорода. Для полной уверенности нужно убедиться, что там есть труднообнаружимый азот. Хотя шансы, что его там нет, достаточно малы, и при открытии нескольких подобных планет уже можно пить шампанское. А когда это произойдет — и произойдет ли вообще — можно только гадать.
|
|
Борис Штерн
|
|
DesMarais et al., 2002, Astrobiology, Vol. 2, Iss. 2, pp. 153?181.
|
Edward W. Schwieterman et al., 2015, The Astrophysical Journal, Vol. 810, Iss. 1, article id. 57, p. 15.
|
Edward W. Schwieterman et al., 2019, The Astrophysical Journal, Vol. 874, No 1.
|
Wordsworth Robin; Pierrehumbert Raymond, 2013, The Astrophysical Journal Letters, Vol. 785, Iss. 2, article id. L20, p. 4.
|
|
Источник
|