Черный ящик искусственного интеллекта
На протяжении нескольких лет в 1980-х годах абитуриентов Медицинской школы больницы Святого Георгия в Лондоне отбирали, используя высокотехнологичный метод. Компьютерная программа, одна из первых в своем роде, просматривала резюме, выбирая из всех заявок порядка 2000 кандидатов в год. Программа анализировала записи о поступлениях, изучая характеристики успешных заявителей, и корректировалась до тех пор, пока ее решения не совпадали с мнением приемной комиссии.
Однако программа научилась находить больше, чем хорошие оценки и признаки академических достижений. Через четыре года после реализации программы два врача в больнице обнаружили, что программа, как правило, отвергает женщин-претендентов и лиц с неевропейскими именами, независимо от их академических достоинств. Врачи обнаружили, что порядка 60 претендентам каждый год просто отказывали в собеседовании из-за их пола или расы. Программа включала гендерные и расовые предубеждения в данные, используемые для ее обучения — по сути, научилась тому, что врачи и иностранцы не лучшие кандидаты в доктора.
Тридцать лет спустя мы столкнулись с аналогичной проблемой, но программы с внутренними предубеждениями теперь шире распространены и принимают решения с еще более высокими ставками. Алгоритмы искусственного интеллекта, основанные на машинном обучении, используются повсюду, начиная с правительственных учреждений и заканчивая сферой здравоохранения, принимая решения и делая прогнозы, основанные на исторических данных. Изучая закономерности в данных, они также поглощают и предубеждения в них. Google, например, показывает больше рекламы низкооплачиваемой работы женщинам, чем мужчинам; однодневная доставка Amazon минует негритянские кварталы, а цифровые камеры с трудом распознают лица не белого цвета.
Трудно понять, является ли алгоритм предвзятым или справедливым, и так считают даже компьютерные эксперты. Одна из причин заключается в том, что детали создания алгоритма часто считаются запатентованной информацией, поэтому их тщательно охраняют владельцы. В более сложных случаях алгоритмы настолько сложны, что даже создатели не знают точно, как они работают. Это проблема так называемого «черного ящика» ИИ — нашей неспособности увидеть внутреннюю часть алгоритма и понять, как он приходит к решению. Если оставить его запертым, наше общество может серьезно пострадать: в цифровой среде реализуются исторические дискриминации, с которыми мы боролись много лет, от рабства и крепостничества до дискриминации женщин.
Эти беспокойства, озвученные в небольших сообществах информатиков ранее, теперь набирают серьезный оборот. За последние два года в этой области появилось довольно много публикаций о прозрачности искусственного интеллекта. Вместе с этой осведомленностью растет и чувство ответственности. «Могут ли быть какие-нибудь вещи, которые нам не стоит строить?», задается вопросом Кейт Кроуфорд, исследователь в Microsoft и соучредитель AI Now Insitute в Нью-Йорке.
«Машинное обучение наконец-то вышло на передний план. Теперь мы пытаемся использовать его для сотен различных задач в реальном мире», говорит Рич Каруана, старший научный сотрудник Microsoft. «Вполне возможно, что люди смогут развернуть вредоносные алгоритмы, которые значительно повлияют на общество в долгосрочной перспективе. Теперь, похоже, внезапно все поняли, что это важная глава в нашей области».
Самовольный алгоритм
Мы давно используем алгоритмы, но проблема черного ящика не имеет прецедентов. Первые алгоритмы были простыми и прозрачными. Многие из них мы до сих пор используем — например, для оценки кредитоспособности. При каждом новом использовании в дело вступает регулирование.
«Люди использовали алгоритмы для оценки кредитоспособности на протяжении десятилетий, но в этих областях были довольно сильные урегулирования, которые росли параллельно с использованием предиктивных алгоритмов», говорит Каруана. Правила регулирования гарантируют, что алгоритмы прогнозирования дают объяснение каждому баллу: вам было отказано, потому что у вас большой кредит либо слишком низкий доход.
В других областях, таких как правовая система и реклама, отсутствуют правила, запрещающие использование заведомо непросчитываемых алгоритмов. Вы можете не знать, почему вам отказали в займе или не взяли на работу, потому что никто не заставляет владельца алгоритма объяснять, как это работает. «Но мы знаем, что поскольку алгоритмы обучаются на данных реального мира, они должны быть предвзятыми — потому что реальный мир предвзят», говорит Каруана.
Рассмотрим, к примеру, язык — один из самых очевидных источников предвзятости. Когда алгоритмы обучаются на написанном тексте, они формуют некоторые ассоциации между словами, которые появляются вместе чаще. Например, они учатся тому, что «для мужчины быть компьютерным программистом — это то же, что для женщины быть домохозяйкой». Когда этому алгоритму поручат найти подходящее резюме для работы программистом, вероятнее всего, он выберет среди мужчин-кандидатов.
Подобные проблемы довольно легко исправить, но многие компании на это просто не пойдут. Вместо этого они будут скрывать подобные несоответствия за щитом защищенной информации. Без доступа к деталям работы алгоритма, эксперты во многих случаях не смогут определить, есть предубеждение или нет.
Поскольку эти алгоритмы являются секретными и остаются вне юрисдикции регулирующих органов, гражданам практически невозможно засудить создателей алгоритмов. В 2016 году высший суд Висконсина отклонил просьбу человека рассмотреть внутреннюю работу COMPAS. Мужчина, Эрик Лумис, был приговорен к шести годам тюремного заключения отчасти потому, что COMPAS посчитал его «высокорисковым». Лумис говорит, что его право на надлежащую процедуру было нарушено зависимостью судьи от непрозрачного алгоритма. Окончательная заявка на рассмотрение дела в Верховном суде США потерпела неудачу в июне 2017 года.
Но скрытные компании не будут пользоваться своей свободой в течение неограниченного времени. К марту Евросоюз примет законы, которые потребуют от компаний возможности объяснить заинтересованным клиентам, как работают их алгоритмы и как принимают решения. У США нет такого законодательства в разработке.
Криминалистика черного ящика
Независимо от того, будут ли регулирующие органы вовлечены во все это, культурный сдвиг в том, как разрабатываются и развертываются алгоритмы, может уменьшить распространенность необъективных алгоритмов. Поскольку все больше компаний и программистов обязуются делать свои алгоритмы прозрачными и объяснимыми, некоторые надеются, что компании, которые этого не сделают, потеряют хорошую репутацию в глазах общественности.
Рост вычислительной мощности позволил создать алгоритмы, которые являются и точными, и объяснимыми — эту техническую задачу разработчики не могли преодолеть исторически. Последние исследования показывают, что можно создавать объяснимые модели, которые предсказывают рецидив криминальных субъектов так же точно, как черный ящик криминалистов вроде COMPAS.
«Все готово — мы знаем, как создавать модели без черных ящиков», говорит Синтия Рудин, доцент информатики и электротехники в Университете Дьюка. «Но не так-то просто привлечь внимание людей к этой работе. Если правительственные агентства перестанут платить за модели черного ящика, это бы помогло. Если судьи откажутся использовать модели черного ящика для вынесения приговора, это тоже поможет».
Другие работают над тем, чтобы придумать способы проверки справедливости алгоритмов, создав систему проверок и балансировок до того, как алгоритм будет выпущен в мир, подобно тому как проходит испытание каждый новый препарат.
«Сейчас модели делаются и развертываются слишком быстро. Не проводится надлежащих проверок до выпуска алгоритма в свет», говорит Сара Тан из Корнеллского университета. В идеале разработчики должны отметать известные предвзятости — например, по полу, возрасту и расе — и запускать внутренние симуляции для проверки своих алгоритмов на наличие других проблем. Тем временем, прежде чем дойти до точки, когда все алгоритмы будут тщательно тестироваться до выпуска, уже есть возможность определять, какие из них будут страдать от предвзятости.
В своей последней работе Тан, Каруана и их коллеги описали новый способ понять, что может происходить под капотом алгоритмов черного ящика. Ученые создали модель, которая имитирует алгоритм черного ящика, обучаясь оценивать риск рецидивизма по данным COMPAS. Также они создали другую модель, которая обучалась по данным реального мира, которые показывают, действительно ли происходил предсказанный рецидивизм. Сравнение двух моделей позволило ученым оценить точность прогнозируемого балла, не анализируя алгоритм. Различия в результатах двух моделей могут показать, какие переменные, такие как раса или возраст, могут быть более важными в той или иной модели. Их результаты показали, что COMPAS предвзято относится к черным людям. Правильно построенные алгоритмы могут устранить давно устоявшиеся предубеждения в области уголовного правосудия, полицейской деятельности и многих других сферах общества.
Источник
При использовании материалов с сайта активная ссылка на него обязательна
Меню
Архив материалов
Проекты наших читателей
Контакты исследователей
Подписка на новости
Проекты
Новости криптозоологии
Хроники природных катастроф
Новости
26.02.2002 - 05.07.2002
05.08.2002 - 23.10.2002 (562)
24.10.2002 - 17.01.2003 (585)
20.01.2003 - 07.04.2003 (709)
08.04.2003 - 01.08.2003 (709)
04.08.2003 - 18.11.2003 (763)
19.11.2003 - 31.03.2004 (721)
01.04.2004 - 13.08.2004 (825)
16.08.2004 - 22.11.2004 (782)
23.11.2004 - 28.03.2005 (756)
29.03.2005 - 29.07.2005 (807)
30.08.2005 - 02.12.2005 (927)
05.12.2005 - 21.04.2006 (912)
24.04.2006 - 23.10.2006 (999)
24.10.2006 - 03.05.2007 (999)
04.05.2007 - 28.01.2008 (999)
29.01.2008 - 12.01.2009 (999)
13.01.2009 - 07.07.2009 (966)
22.08.2009 - 21.01.2010 (996)
22.01.2010 - 22.06.2010 (1000)
23.06.2010 - 14.01.2011 (1042)
17.01.2011 - 31.05.2011 (1008)
01.06.2011 - 03.11.2011 (1003)
07.11.2011 - 16.03.2012 (996)
19.03.2012 - 09.06.2012 (1009)
13.06.2012 - 07.09.2012 (988)
10.09.2012 - 19.11.2012 (1004)
20.11.2012 - 14.01.2013 (1015)
15.01.2013 - 22.02.2013 (1000)
23.02.2013 - 08.04.2013 (991)
09.04.2013 - 31.05.2013 (1015)
01.06.2013 - 18.07.2013 (992)
19.07.2013 - 03.09.2013 (1014)
04.09.2013 - 20.10.2013 (1001)
21.10.2013 - 02.12.2013 (1001)
03.12.2013 - 18.01.2014 (997)
19.01.2014 - 07.03.2014 (994)
08.03.2014 - 24.04.2014 (1000)
25.04.2014 - 18.06.2014 (1005)
19.06.2014 - 15.08.2014 (1019)
16.08.2014 - 07.10.2014 (1006)
08.10.2014 - 16.11.2014 (995)
17.11.2014 - 25.12.2014 (1004)
26.12.2014 - 09.02.2015 (989)
10.02.2015 - 20.03.2015 (998)
21.03.2015 - 22.04.2015 (1001)
23.04.2015 - 29.05.2015 (997)
29.05.2015 - 30.06.2015 (995)
30.06.2015 - 29.07.2015 (990)
29.07.2015 - 26.08.2015 (998)
27.08.2015 - 24.09.2015 (988)
25.09.2015 - 22.10.2015 (991)
23.10.2015 - 18.11.2015 (1000)
18.11.2015 - 16.12.2015 (990)
17.12.2015 - 23.01.2016 (1000)
24.01.2016 - 25.02.2016 (1000)
26.02.2016 - 24.03.2016 (1000)
24.03.2016 - 16.04.2016 (990)
17.04.2016 - 19.05.2016 (999)
20.05.2016 - 22.06.2016 (993)
23.06.2016 - 01.08.2016 (995)
02.08.2016 - 12.09.2016 (990)
13.09.2016 - 25.10.2016 (989)
26.10.2016 - 05.12.2016 (995)
06.12.2016 - 15.01.2017 (995)
16.01.2017 - 23.02.2017 (990)
24.02.2017 - 03.04.2017 (994)
04.04.2017 - 18.05.2017 (1000)
19.05.2017 - 05.07.2017 (1000)
06.07.2017 - 24.08.2017 (1000)
25.08.2017 - 06.10.2017 (991)
07.10.2017 - 15.11.2017 (990)
16.11.2017 - 24.12.2017 (1000)
25.12.2017 - 04.02.2018 (990)
05.02.2018 - 17.03.2018 (1000)
18.03.2018 - 02.05.2018 (990)
03.05.2018 - 11.06.2018 (1000)
12.06.2018 - 18.07.2018 (990)
19.07.2018 - 24.08.2018 (1000)
25.08.2018 - 02.10.2018 (1000)
03.10.2018 - 07.11.2018 (990)
08.11.2018 - 13.12.2018 (990)
14.12.2018 - 23.01.2019 (1000)
24.01.2019 - 02.03.2019 (1000)
03.03.2019 - 12.04.2019 (1010)
13.04.2019 - 23.05.2019 (990)
24.05.2019 - 03.07.2019 (1000)
04.07.2019 - 11.08.2019 (1000)
12.08.2019 - 16.09.2019 (990)
17.09.2019 - 26.10.2019 (1000)
27.10.2019 - 12.12.2019 (1000)
13.12.2019 - 25.01.2020 (1000)
26.01.2020 - 06.03.2020 (990)
07.03.2020 - 16.04.2020 (1010)
17.04.2020 - 19.05.2020 (1000)
20.05.2020 - 25.06.2020 (990)
26.06.2020 - 04.08.2020 (995)
05.08.2020 - 16.09.2020 (1005)
17.09.2020 - 26.10.2020 (990)
27.10.2020 - 27.11.2020 (990)
28.11.2020 - 07.01.2021 (990)
08.01.2021 - 15.02.2021 (1000)
16.02.2021 - 31.03.2021 (1000)
01.04.2021 - 12.05.2021 (1000)
13.05.2021 - 14.06.2021 (990)
15.06.2021 - 26.07.2021 (980)
27.07.2021 - 31.08.2021 (990)
01.09.2021 - 07.10.2021 (1000)
08.09.2021 - 07.11.2021 (1000)
08.11.2021 - 10.12.2021 (1000)
11.12.2021 - 24.01.2022 (990)
25.01.2022 - 04.03.2022 (1000)
05.03.2022 - 10.04.2022 (990)
11.04.2022 - 17.05.2022 (1000)
18.05.2022 - 23.06.2022 (980)
24.06.2022 - 31.07.2022 (990)
01.08.2022 - 13.09.2022 (990)
14.09.2022 - 21.10.2022 (990)
22.10.2022 - 29.11.2022 (1000)
30.11.2022 - 22.01.2023 (1000)
23.01.2023 - 02.03.2023 (990)
03.03.2023 - 21.04.2023 (1000)
22.04.2023 - 13.06.2023 (990)
14.06.2023 - 02.08.2023 (1000)
03.08.2023 - 21.09.2023 (1000)
22.09.2023 - 06.11.2023 (990)
07.11.2023 - 24.12.2023 (990)
25.12.2023 - 18.02.2024 (1000)
19.02.2024 - 05.04.2024 (990)
06.04.2024 - 25.05.2024 (1000)
26.05.2024 - 26.07.2024 (1000)
26.07.2024 - 25.08.2024 (990)
26.08.2024 - 28.09.2024 (980)
29.09.2024 - 01.11.2024 (1000)
02.11.2024 - 02.12.2024 (980)
03.12.2024 - 08.01.2025 (990)
09.01.2025 - 09.02.2025 (1000)
10.02.2025 - 20.03.2025 (1000)
21.03.2025 - 03.05.2025 (990)
04.05.2025 - ...
Статьи
Статьи: раздел 1 (1024)
Статьи: раздел 2 (1006)
Статьи: раздел 3 (1000)
Статьи: раздел 4 (1044)
Статьи: раздел 5 (1001)
Статьи: раздел 6 (1000)
Статьи: раздел 7 (1000)
Статьи: раздел 8 (1013)
Статьи: раздел 9 (1000)
Статьи: раздел 10 (1000)
Статьи: раздел 11 (329)
Статьи: раздел 12 (1000)
Статьи: раздел 13 (730)
Лента новостей

Американские военные заметили дискообразный НЛО

Борьба властей и уфологического сообщества

Бывший пилот истребителя чуть не столкнулся с НЛО

Дискообразный НЛО запечатлен американскими военными

Достоянием общественности стали кадры с НЛО

Загадочное мумифицированное кровососущее существо

ИИ стал экзистенциальной угрозой для СМИ

Нападение демонов на начальную школу

Невиданные ранее кадры с НЛО

Папа Римский объявил войну искусственному интелекту

Пилот истребителя ошеломлен тем, что увидел НЛО

Продвинутые модели ИИ будут хитрить, обманывать и воровать

Река в форме дракона - знак, оставленный рептилоидами

Родители поджигают имущество одержимого учителя

Ролик с китайской космостанции является поддельным

Секретная встреча китайских спутников

Фильм об НЛО вызвал волну сообщений о странной активности

Церковь присоединяется к исследованию НЛО

Череп, оставленный инопланетянами, на острове в Канаде

Я сталкиваюсь с инопланетянами каждый день

Какие навыки дают современные онлайн-школы IT помимо программирования

Был ли первобытный человек технически развит

Военное видео с НЛО вызвало споры

Всемирный потоп в греческой мифологии

Встреча англичанки со странным существом

Встреча с инопланетянами возле Кошенцина

Города Мичигана, в которых были замечены НЛО

Древние передовые знания ведических мудрецов

Жизнь на Марсе будет похожа на тюремное заключение

Информация и экспертные знания об НЛО

Инцидент на острове Мори будет обсуждаться в Розуэлле

Каково назначение загадочных Врат Богов

Летчик-истребитель видел НЛО

Магнитное поле странным образом управляет воздухом

Мы были не первой развитой цивилизацией на Земле

Наблюдения чудовищ в озере Лох-Несс

НЛО в древние времена

НЛО замечен на афгано-пакистанской границе

Пилот истребителя едва не столкнулся с НЛО

Почему йети до сих пор не обнаружены

Предсказания Леонардо да Винчи

Призрачные огни терроризируют бенгальских рыбаков

Просочившееся в сеть военное видео с НЛО

Самое популярное место НЛО в Австралии

Следы инопланетян на дне Балтийского моря

Собаку-призрака заметили в историческом здании Глостера

Странный объект снят в Китае

Странный прямоугольный НЛО заметил пилот истребителя

У людей есть ингредиенты для отращивания конечностей

Ученые обнаружили парадокс в эволюции

Черви доказали, что Дарвин ошибался

Астероид-убийца может столкнуться с Луной

Биомеханический НЛО над графством Суррей

Бывший пилот ВВС США описывает блестящий объект

Вся жизнь на Земле подчиняется одному правилу

Где чаще всего живут психопаты

Городская инфраструктура замечена на Марсе

Журналисты борются с сокрытием информации о НЛО

Загадочная летающая тарелка в пустыне Сахара

Загадочный сигнал вырвался из глубин Антарктиды

ИИ может спровоцировать ядерный Армагеддон

ИИ подрывает навыки критического мышления

Инопланетяне развязали войну между Ираном и Израилем

Кто первым применит ядерное оружие

НЛО замечен над Массачусетсом

НЛО, меняющий форму, над Сакраменто

Новый ключ, который может раскрыть Пятую силу

Обнаружено недостающее вещество во Вселенной

Призрачный шлейф обнаружен под восточным Оманом

Причудливые и запутанные тайны из мира авиации

Свет имеет доступ к 37 различным измерениям

Скрытая закономерность сохранит ваши секреты

Странные сооружения под водой у острова Бали

Сферу Буга видели в Китае

Таинственные огни над Парагваем

Таинственные сигналы из Антарктиды

Тюрьма, населенная призраками

Фото инопланетян, опубликованные Пентагоном

Цилиндрический НЛО над Колорадо-Спрингс

Через 15 лет люди будут жить в оазисах на Марсе

Электронные письма Пентагон о НЛО

Voyah Dream и Free. Премиум без компромиссов

КамАЗ Компас. Важность и причины технического обслуживания

Changan. Премиум в движении - обзор моделей UNI-K, HUNTERplus

Обзор популярных моделей Haval. Jolion и Dargo

Гуанчи - последние потомки Атлантиды

Жюль Верн предсказал нечто похожее на интернет

ИИ отбирает рабочие места у айтишников

ИИ позволит колонизировать галактику через пять лет

Компания OpenAI вскрыла тёмные личности у ИИ

Кричащий призрак на месте ДТП

Металлический шар наблюдали в Китае

На каких планетах стоит искать жизнь

Наш мир может быть космической голограммой

Нашли недостающее вещество Вселенной

Нечто промчалось в небе над Мексикой

Носовое дыхание оказалось уникальным для каждого человека

Папа считает угрозу ИИ человечеству главной проблемой

План заражения Энцелада жизнью

Подразделение-201 ускорит внедренение военных ИИ-технологий

Похищения феями и подражателями

Почему ИИ не победит в игре 'Что? Где? Когда?'

Призрачный канал утечки тепла из ядра Земли

Таинственные болотные огни убивают рыбаков

Человеческие сердца впервые вырастили в зародышах свиньи

Модельный ряд Audi Q. Характерные особенности и ключевые представители

Американские военные сняли летающую тарелку

В пустыне Сахара замечен НЛО

Верящие в теории заговора излишне самоуверенны

Загадочная резьба с библейским посланием

Загадочные радиосигналы из-подо льда Антарктиды

Как формируются скалистые планеты

На Марсе растут грибы

Обнаружили сотни таинственных гигантских вирусов

Поможет ли планетарный зонт охладить планету

Раскройте тайны Вселенной с помощью гравилинзирования

Рецепт получения настоящего криптонита

Свежий взгляд на Космический рассвет

События, которые положат конец цивилизации

Таинственная медуза замечена над пустыней США

Тайна сербского Лох-Несского чудовища

Темная материя влияет на движение звезд

Теория заговора о космической станции Тяньгун

Уникальное поведение аккреционного диска SS 433

Холодная экзопланета на странной орбите

Шокирующее открытие в глубинах Земли

Обзор МФО которые выдают микрозайм на карту

Как правильно заправить газгольдер и рассчитать объем

Польза лазертага в Воронеже - не только в физической активности

Беспрецедентные виды южного полюса Солнца

Вспышки сверхновых вызвали изменения климата

Где находится центр Вселенной

Заметили неожиданно сильную струю черной дыры

Конспирологи оказались слишком самонадеянными

Луна переливается блестящими стеклянными бусинками

Необычные звездные ясли озадачили ученых

НЛО использовались для сокрытия военных секретов

Новые данные о сверхмассивной черной дыре в M87

Охотники на Несси раскупили все билеты на автобусы

Парадоксу Ферми исполнилось 75 лет

План по ускорению космических полетов

Повышение точности квантовых часов

Последние слова, которые люди слышат перед смертью

Самая крупная ароматическая молекула в космосе

Силикатные облака обнаружены в атмосфере экзопланеты

Сняли детеныша Лох-Несского чудовища

Спутники Урана удивили ученых

Уникальные виды внешней атмосферы Солнца

Фильтрация наземных загрязнений при поиске инопланетян

Процедура имплантации зубов. Практический разбор этапов и реабилитации

Верна ли теория палеоконтакта

Вторая сфера появилась в небе Колумбии

Зловещая правда о происходящем в Зоне 51

Как при помощи смарт-часов украсть данные

Кампания по дезинформации об НЛО

Китай успешно вживил мозговой имплант человеку

Летающая тарелка обнаружена в пустыне Сахара

Мужчина может видеть будущее

Мужчина пил из одной и той же термокружки 10 лет и умер

НЛО использовали для прикрытия спецопераций

НЛО как прикрытие для правительства США

Первый в мире город роботов запустит Тойота

Почему в США так часто наблюдают НЛО

Примитивная жизнь может существовать на лунах

Провалившаяся во времени на автомобиле

Раскрыта потрясающая правда об НЛО

Самые известные наблюдения НЛО в Техасе

Сходство мышления человека и искусственного интеллекта

США лидируют по количеству наблюдений НЛО

Футуролог назвал дату, когда люди смогут обмануть смерть

Вероятность столкновения Млечного Пути с Андромедой

Восстановление ДНК на космической станции

Житель Покипси снял странные огни в небе

Заброшенная НЛО-деревня с леденящей душу историей

Извините, но никаких НЛО нет

Как выбраться из болота теории струн

Люди не могут контролировать все

Министерство обороны США придумало НЛО

Млечный Путь обречен на столкновение с Андромедой

НЛО - это шутка

Обнаружена новая Зона 51, скрытая в горах Аляски

Обнаружено место формирования новой планеты

Откуда взялись космические лучи

Перспективы и опасности полета на Марс

Поиск аксионов путем анализа рентгеновских наблюдений

Решение давней загадки нейтронных звезд

Наверх
Яндекс.Метрика