Домашние роботы со здравым смыслом
Роботов учат выполнять все более сложные домашние задачи - от вытирания разливов до подачи еды. Многие такие домашние роботы-стажеры учатся с помощью имитации; они запрограммированы копировать движения, которыми физически руководит человек. Оказывается, роботы - отличные имитаторы. Но если инженеры не запрограммируют их приспосабливаться ко всем возможным ударам и толчкам, роботы не обязательно будут знать, как справляться с подобными ситуациями, если только не начнут выполнять свою задачу с самого начала. Теперь инженеры Массачусетского технологического института стремятся наделить роботов толикой здравого смысла, когда они сталкиваются с ситуациями, которые сбивают их с намеченного пути. Они разработали метод, который связывает данные о движении роботов со “знанием здравого смысла” больших языковых моделей, или LLMS. Их подход позволяет роботу логически разбирать множество заданных домашних задач на подзадачи и физически приспосабливаться к сбоям в рамках подзадачи, чтобы робот мог двигаться дальше без необходимости возвращаться и начинать задачу с нуля — и без необходимости инженерам явно программировать исправления для каждого возможного сбоя на этом пути.
“Имитационное обучение - это основной подход, позволяющий использовать бытовых роботов. Но если робот слепо имитирует траектории движения человека, могут накапливаться крошечные ошибки, которые в конечном итоге приведут к срыву остальной части выполнения”, - говорит Янвэй Ван, аспирант кафедры электротехники и компьютерных наук Массачусетского технологического института (EECS). “С помощью нашего метода робот может самостоятельно исправлять ошибки при выполнении и повышать общий успех выполнения задачи”. Ван и его коллеги подробно описывают свой новый подход в исследовании, которое они представят на Международной конференции по обучению репрезентациям (ICLR) в мае. Соавторами исследования являются аспиранты EECS Цунь-Суан Ван и Цзяюань Мао, Майкл Хагеноу, постдок факультета аэронавтики и астронавтики Массачусетского технологического института (AeroAstro), и Джули Шах, профессор Х.Н. Слейтера по аэронавтике и астронавтике в Массачусетском технологическом институте. Исследователи иллюстрируют свой новый подход простой работой: зачерпывают шарики из одной чаши и пересыпают их в другую. Для выполнения этой задачи инженеры обычно перемещают робота, выполняя движения зачерпывания и пересыпания — все по одной траектории движения жидкости.
Они могли бы проделать это несколько раз, чтобы дать роботу возможность имитировать ряд демонстраций человека. “Но демонстрация человека - это одна длинная непрерывная траектория”, - говорит Ван. Команда поняла, что, хотя человек может продемонстрировать выполнение одной задачи за один раз, эта задача зависит от последовательности подзадач, или траекторий. Например, робот должен сначала дотянуться до миски, прежде чем он сможет зачерпнуть, и он должен зачерпнуть шарики, прежде чем перейти к пустой миске, и так далее. Если робота подталкивают совершить ошибку во время выполнения любой из этих подзадач, его единственным выходом является остановка и запуск с самого начала, если только инженеры не должны были явно обозначить каждую подзадачу и запрограммировать или собрать новые демонстрации для робота, чтобы он мог восстановиться после указанного сбоя, чтобы робот мог самостоятельноправильно в данный момент. “Такой уровень планирования очень утомителен”, - говорит Ван.
Вместо этого он и его коллеги обнаружили, что часть этой работы может быть выполнена LLMS автоматически. Эти модели глубокого обучения обрабатывают огромные библиотеки текста, которые они используют для установления связей между словами, предложениями и абзацами. Благодаря этим связям магистр права может затем генерировать новые предложения, основываясь на том, что он узнал о типе слова, которое, вероятно, последует за последним. Со своей стороны, исследователи обнаружили, что в дополнение к предложениям и абзацам LLM может быть предложено составить логический список подзадач, которые будут задействованы в данной задаче. Например, если запросить список действий, связанных с перекладыванием шариков из одной чаши в другую, LLM может выдать последовательность глаголов, таких как “достать”, “зачерпнуть”, “транспортировать” и “налить”. “У LLM есть способ рассказать вам, как выполнять каждый шаг задачи, на естественном языке. Непрерывная демонстрация человеком - это воплощение этих шагов в физическом пространстве”, - говорит Ван. “И мы хотели соединить их, чтобы робот автоматически знал, на какой стадии находится задача, и мог самостоятельно перепланировать и восстановить”.
Для своего нового подхода команда разработала алгоритм, позволяющий автоматически связывать метку на естественном языке LLM для конкретной подзадачи с положением робота в физическом пространстве или изображением, кодирующим состояние робота. Сопоставление физических координат робота или изображения состояния робота с меткой на естественном языке известно как “заземление”. Новый алгоритм команды разработан для изучения базового “классификатора”, что означает, что он учится автоматически определять, в какой семантической подзадаче находится робот — например, “достичь” или “зачерпнуть” — учитывая его физические координаты или вид изображения. “Классификатор заземления облегчает этот диалог между тем, что робот делает в физическом пространстве, и тем, что LLM знает о подзадачах, а также об ограничениях, на которые вы должны обращать внимание в рамках каждой подзадачи”, - объясняет Ван.
Команда продемонстрировала этот подход в экспериментах с роботизированной рукой, которую они натренировали на задаче зачерпывания мрамора. Экспериментаторы обучали робота, физически направляя его в выполнении задачи: сначала дотянуться до чаши, зачерпнуть шарики, перенести их через пустую чашу и высыпать в нее. После нескольких демонстраций команда использовала предварительно обученный LLM и попросила модель перечислить шаги, связанные с перекладыванием шариков из одной чаши в другую. Затем исследователи использовали свой новый алгоритм, чтобы связать определенные LLM подзадачи с данными траектории движения робота. Алгоритм автоматически научился сопоставлять физические координаты робота в траекториях и соответствующий вид изображения с заданной подзадачей. Затем команда позволила роботу самостоятельно выполнить задачу по зачерпыванию, используя недавно изученные классификаторы заземления.
По мере того, как робот выполнял этапы задания, экспериментаторы подталкивали робота с его пути и сбивали шарики с его ложки в различных точках. Вместо того чтобы останавливаться и начинать все сначала или продолжать вслепую, не имея шариков на ложке, бот смог выполнить самокорректировку и выполнил каждую подзадачу, прежде чем перейти к следующей. (Например, он убедился бы, что успешно зачерпнул шарики, прежде чем переносить их в пустую чашу.) ”С помощью нашего метода, когда робот совершает ошибки, нам не нужно просить людей программировать или проводить дополнительные демонстрации того, как восстанавливаться после сбоев", - говорит Ван. “Это очень интересно, потому что сейчас прилагаются огромные усилия для обучения бытовых роботов данным, собранным в системах телеуправления. Теперь наш алгоритм может преобразовать эти обучающие данные в надежное поведение робота, способного выполнять сложные задачи, несмотря на внешние возмущения”.
Источник
При использовании материалов с сайта активная ссылка на него обязательна
Меню
Архив материалов
Проекты наших читателей
Контакты исследователей
Подписка на новости
Проекты
Новости криптозоологии
Хроники природных катастроф
Новости
26.02.2002 - 05.07.2002
05.08.2002 - 23.10.2002 (562)
24.10.2002 - 17.01.2003 (585)
20.01.2003 - 07.04.2003 (709)
08.04.2003 - 01.08.2003 (709)
04.08.2003 - 18.11.2003 (763)
19.11.2003 - 31.03.2004 (721)
01.04.2004 - 13.08.2004 (825)
16.08.2004 - 22.11.2004 (782)
23.11.2004 - 28.03.2005 (756)
29.03.2005 - 29.07.2005 (807)
30.08.2005 - 02.12.2005 (927)
05.12.2005 - 21.04.2006 (912)
24.04.2006 - 23.10.2006 (999)
24.10.2006 - 03.05.2007 (999)
04.05.2007 - 28.01.2008 (999)
29.01.2008 - 12.01.2009 (999)
13.01.2009 - 07.07.2009 (966)
22.08.2009 - 21.01.2010 (996)
22.01.2010 - 22.06.2010 (1000)
23.06.2010 - 14.01.2011 (1042)
17.01.2011 - 31.05.2011 (1008)
01.06.2011 - 03.11.2011 (1003)
07.11.2011 - 16.03.2012 (996)
19.03.2012 - 09.06.2012 (1009)
13.06.2012 - 07.09.2012 (988)
10.09.2012 - 19.11.2012 (1004)
20.11.2012 - 14.01.2013 (1015)
15.01.2013 - 22.02.2013 (1000)
23.02.2013 - 08.04.2013 (991)
09.04.2013 - 31.05.2013 (1015)
01.06.2013 - 18.07.2013 (992)
19.07.2013 - 03.09.2013 (1014)
04.09.2013 - 20.10.2013 (1001)
21.10.2013 - 02.12.2013 (1001)
03.12.2013 - 18.01.2014 (997)
19.01.2014 - 07.03.2014 (994)
08.03.2014 - 24.04.2014 (1000)
25.04.2014 - 18.06.2014 (1005)
19.06.2014 - 15.08.2014 (1019)
16.08.2014 - 07.10.2014 (1006)
08.10.2014 - 16.11.2014 (995)
17.11.2014 - 25.12.2014 (1004)
26.12.2014 - 09.02.2015 (989)
10.02.2015 - 20.03.2015 (998)
21.03.2015 - 22.04.2015 (1001)
23.04.2015 - 29.05.2015 (997)
29.05.2015 - 30.06.2015 (995)
30.06.2015 - 29.07.2015 (990)
29.07.2015 - 26.08.2015 (998)
27.08.2015 - 24.09.2015 (988)
25.09.2015 - 22.10.2015 (991)
23.10.2015 - 18.11.2015 (1000)
18.11.2015 - 16.12.2015 (990)
17.12.2015 - 23.01.2016 (1000)
24.01.2016 - 25.02.2016 (1000)
26.02.2016 - 24.03.2016 (1000)
24.03.2016 - 16.04.2016 (990)
17.04.2016 - 19.05.2016 (999)
20.05.2016 - 22.06.2016 (993)
23.06.2016 - 01.08.2016 (995)
02.08.2016 - 12.09.2016 (990)
13.09.2016 - 25.10.2016 (989)
26.10.2016 - 05.12.2016 (995)
06.12.2016 - 15.01.2017 (995)
16.01.2017 - 23.02.2017 (990)
24.02.2017 - 03.04.2017 (994)
04.04.2017 - 18.05.2017 (1000)
19.05.2017 - 05.07.2017 (1000)
06.07.2017 - 24.08.2017 (1000)
25.08.2017 - 06.10.2017 (991)
07.10.2017 - 15.11.2017 (990)
16.11.2017 - 24.12.2017 (1000)
25.12.2017 - 04.02.2018 (990)
05.02.2018 - 17.03.2018 (1000)
18.03.2018 - 02.05.2018 (990)
03.05.2018 - 11.06.2018 (1000)
12.06.2018 - 18.07.2018 (990)
19.07.2018 - 24.08.2018 (1000)
25.08.2018 - 02.10.2018 (1000)
03.10.2018 - 07.11.2018 (990)
08.11.2018 - 13.12.2018 (990)
14.12.2018 - 23.01.2019 (1000)
24.01.2019 - 02.03.2019 (1000)
03.03.2019 - 12.04.2019 (1010)
13.04.2019 - 23.05.2019 (990)
24.05.2019 - 03.07.2019 (1000)
04.07.2019 - 11.08.2019 (1000)
12.08.2019 - 16.09.2019 (990)
17.09.2019 - 26.10.2019 (1000)
27.10.2019 - 12.12.2019 (1000)
13.12.2019 - 25.01.2020 (1000)
26.01.2020 - 06.03.2020 (990)
07.03.2020 - 16.04.2020 (1010)
17.04.2020 - 19.05.2020 (1000)
20.05.2020 - 25.06.2020 (990)
26.06.2020 - 04.08.2020 (995)
05.08.2020 - 16.09.2020 (1005)
17.09.2020 - 26.10.2020 (990)
27.10.2020 - 27.11.2020 (990)
28.11.2020 - 07.01.2021 (990)
08.01.2021 - 15.02.2021 (1000)
16.02.2021 - 31.03.2021 (1000)
01.04.2021 - 12.05.2021 (1000)
13.05.2021 - 14.06.2021 (990)
15.06.2021 - 26.07.2021 (980)
27.07.2021 - 31.08.2021 (990)
01.09.2021 - 07.10.2021 (1000)
08.09.2021 - 07.11.2021 (1000)
08.11.2021 - 10.12.2021 (1000)
11.12.2021 - 24.01.2022 (990)
25.01.2022 - 04.03.2022 (1000)
05.03.2022 - 10.04.2022 (990)
11.04.2022 - 17.05.2022 (1000)
18.05.2022 - 23.06.2022 (980)
24.06.2022 - 31.07.2022 (990)
01.08.2022 - 13.09.2022 (990)
14.09.2022 - 21.10.2022 (990)
22.10.2022 - 29.11.2022 (1000)
30.11.2022 - 22.01.2023 (1000)
23.01.2023 - 02.03.2023 (990)
03.03.2023 - 21.04.2023 (1000)
22.04.2023 - 13.06.2023 (990)
14.06.2023 - 02.08.2023 (1000)
03.08.2023 - 21.09.2023 (1000)
22.09.2023 - 06.11.2023 (990)
07.11.2023 - 24.12.2023 (990)
25.12.2023 - 18.02.2024 (1000)
19.02.2024 - 05.04.2024 (990)
06.04.2024 - 25.05.2024 (1000)
26.05.2024 - 26.07.2024 (1000)
26.07.2024 - 25.08.2024 (990)
26.08.2024 - 28.09.2024 (980)
29.09.2024 - 01.11.2024 (1000)
02.11.2024 - 02.12.2024 (980)
03.12.2024 - 08.01.2025 (990)
09.01.2025 - 09.02.2025 (1000)
10.02.2025 - 20.03.2025 (1000)
21.03.2025 - 03.05.2025 (990)
04.05.2025 - ...
Статьи
Статьи: раздел 1 (1024)
Статьи: раздел 2 (1006)
Статьи: раздел 3 (1000)
Статьи: раздел 4 (1044)
Статьи: раздел 5 (1001)
Статьи: раздел 6 (1000)
Статьи: раздел 7 (1000)
Статьи: раздел 8 (1013)
Статьи: раздел 9 (1000)
Статьи: раздел 10 (1000)
Статьи: раздел 11 (329)
Статьи: раздел 12 (1000)
Статьи: раздел 13 (730)
Лента новостей

Американские военные заметили дискообразный НЛО

Борьба властей и уфологического сообщества

Бывший пилот истребителя чуть не столкнулся с НЛО

Дискообразный НЛО запечатлен американскими военными

Достоянием общественности стали кадры с НЛО

Загадочное мумифицированное кровососущее существо

ИИ стал экзистенциальной угрозой для СМИ

Нападение демонов на начальную школу

Невиданные ранее кадры с НЛО

Папа Римский объявил войну искусственному интелекту

Пилот истребителя ошеломлен тем, что увидел НЛО

Продвинутые модели ИИ будут хитрить, обманывать и воровать

Река в форме дракона - знак, оставленный рептилоидами

Родители поджигают имущество одержимого учителя

Ролик с китайской космостанции является поддельным

Секретная встреча китайских спутников

Фильм об НЛО вызвал волну сообщений о странной активности

Церковь присоединяется к исследованию НЛО

Череп, оставленный инопланетянами, на острове в Канаде

Я сталкиваюсь с инопланетянами каждый день

Какие навыки дают современные онлайн-школы IT помимо программирования

Был ли первобытный человек технически развит

Военное видео с НЛО вызвало споры

Всемирный потоп в греческой мифологии

Встреча англичанки со странным существом

Встреча с инопланетянами возле Кошенцина

Города Мичигана, в которых были замечены НЛО

Древние передовые знания ведических мудрецов

Жизнь на Марсе будет похожа на тюремное заключение

Информация и экспертные знания об НЛО

Инцидент на острове Мори будет обсуждаться в Розуэлле

Каково назначение загадочных Врат Богов

Летчик-истребитель видел НЛО

Магнитное поле странным образом управляет воздухом

Мы были не первой развитой цивилизацией на Земле

Наблюдения чудовищ в озере Лох-Несс

НЛО в древние времена

НЛО замечен на афгано-пакистанской границе

Пилот истребителя едва не столкнулся с НЛО

Почему йети до сих пор не обнаружены

Предсказания Леонардо да Винчи

Призрачные огни терроризируют бенгальских рыбаков

Просочившееся в сеть военное видео с НЛО

Самое популярное место НЛО в Австралии

Следы инопланетян на дне Балтийского моря

Собаку-призрака заметили в историческом здании Глостера

Странный объект снят в Китае

Странный прямоугольный НЛО заметил пилот истребителя

У людей есть ингредиенты для отращивания конечностей

Ученые обнаружили парадокс в эволюции

Черви доказали, что Дарвин ошибался

Астероид-убийца может столкнуться с Луной

Биомеханический НЛО над графством Суррей

Бывший пилот ВВС США описывает блестящий объект

Вся жизнь на Земле подчиняется одному правилу

Где чаще всего живут психопаты

Городская инфраструктура замечена на Марсе

Журналисты борются с сокрытием информации о НЛО

Загадочная летающая тарелка в пустыне Сахара

Загадочный сигнал вырвался из глубин Антарктиды

ИИ может спровоцировать ядерный Армагеддон

ИИ подрывает навыки критического мышления

Инопланетяне развязали войну между Ираном и Израилем

Кто первым применит ядерное оружие

НЛО замечен над Массачусетсом

НЛО, меняющий форму, над Сакраменто

Новый ключ, который может раскрыть Пятую силу

Обнаружено недостающее вещество во Вселенной

Призрачный шлейф обнаружен под восточным Оманом

Причудливые и запутанные тайны из мира авиации

Свет имеет доступ к 37 различным измерениям

Скрытая закономерность сохранит ваши секреты

Странные сооружения под водой у острова Бали

Сферу Буга видели в Китае

Таинственные огни над Парагваем

Таинственные сигналы из Антарктиды

Тюрьма, населенная призраками

Фото инопланетян, опубликованные Пентагоном

Цилиндрический НЛО над Колорадо-Спрингс

Через 15 лет люди будут жить в оазисах на Марсе

Электронные письма Пентагон о НЛО

Voyah Dream и Free. Премиум без компромиссов

КамАЗ Компас. Важность и причины технического обслуживания

Changan. Премиум в движении - обзор моделей UNI-K, HUNTERplus

Обзор популярных моделей Haval. Jolion и Dargo

Гуанчи - последние потомки Атлантиды

Жюль Верн предсказал нечто похожее на интернет

ИИ отбирает рабочие места у айтишников

ИИ позволит колонизировать галактику через пять лет

Компания OpenAI вскрыла тёмные личности у ИИ

Кричащий призрак на месте ДТП

Металлический шар наблюдали в Китае

На каких планетах стоит искать жизнь

Наш мир может быть космической голограммой

Нашли недостающее вещество Вселенной

Нечто промчалось в небе над Мексикой

Носовое дыхание оказалось уникальным для каждого человека

Папа считает угрозу ИИ человечеству главной проблемой

План заражения Энцелада жизнью

Подразделение-201 ускорит внедренение военных ИИ-технологий

Похищения феями и подражателями

Почему ИИ не победит в игре 'Что? Где? Когда?'

Призрачный канал утечки тепла из ядра Земли

Таинственные болотные огни убивают рыбаков

Человеческие сердца впервые вырастили в зародышах свиньи

Модельный ряд Audi Q. Характерные особенности и ключевые представители

Американские военные сняли летающую тарелку

В пустыне Сахара замечен НЛО

Верящие в теории заговора излишне самоуверенны

Загадочная резьба с библейским посланием

Загадочные радиосигналы из-подо льда Антарктиды

Как формируются скалистые планеты

На Марсе растут грибы

Обнаружили сотни таинственных гигантских вирусов

Поможет ли планетарный зонт охладить планету

Раскройте тайны Вселенной с помощью гравилинзирования

Рецепт получения настоящего криптонита

Свежий взгляд на Космический рассвет

События, которые положат конец цивилизации

Таинственная медуза замечена над пустыней США

Тайна сербского Лох-Несского чудовища

Темная материя влияет на движение звезд

Теория заговора о космической станции Тяньгун

Уникальное поведение аккреционного диска SS 433

Холодная экзопланета на странной орбите

Шокирующее открытие в глубинах Земли

Обзор МФО которые выдают микрозайм на карту

Как правильно заправить газгольдер и рассчитать объем

Польза лазертага в Воронеже - не только в физической активности

Беспрецедентные виды южного полюса Солнца

Вспышки сверхновых вызвали изменения климата

Где находится центр Вселенной

Заметили неожиданно сильную струю черной дыры

Конспирологи оказались слишком самонадеянными

Луна переливается блестящими стеклянными бусинками

Необычные звездные ясли озадачили ученых

НЛО использовались для сокрытия военных секретов

Новые данные о сверхмассивной черной дыре в M87

Охотники на Несси раскупили все билеты на автобусы

Парадоксу Ферми исполнилось 75 лет

План по ускорению космических полетов

Повышение точности квантовых часов

Последние слова, которые люди слышат перед смертью

Самая крупная ароматическая молекула в космосе

Силикатные облака обнаружены в атмосфере экзопланеты

Сняли детеныша Лох-Несского чудовища

Спутники Урана удивили ученых

Уникальные виды внешней атмосферы Солнца

Фильтрация наземных загрязнений при поиске инопланетян

Процедура имплантации зубов. Практический разбор этапов и реабилитации

Верна ли теория палеоконтакта

Вторая сфера появилась в небе Колумбии

Зловещая правда о происходящем в Зоне 51

Как при помощи смарт-часов украсть данные

Кампания по дезинформации об НЛО

Китай успешно вживил мозговой имплант человеку

Летающая тарелка обнаружена в пустыне Сахара

Мужчина может видеть будущее

Мужчина пил из одной и той же термокружки 10 лет и умер

НЛО использовали для прикрытия спецопераций

НЛО как прикрытие для правительства США

Первый в мире город роботов запустит Тойота

Почему в США так часто наблюдают НЛО

Примитивная жизнь может существовать на лунах

Провалившаяся во времени на автомобиле

Раскрыта потрясающая правда об НЛО

Самые известные наблюдения НЛО в Техасе

Сходство мышления человека и искусственного интеллекта

США лидируют по количеству наблюдений НЛО

Футуролог назвал дату, когда люди смогут обмануть смерть

Вероятность столкновения Млечного Пути с Андромедой

Восстановление ДНК на космической станции

Житель Покипси снял странные огни в небе

Заброшенная НЛО-деревня с леденящей душу историей

Извините, но никаких НЛО нет

Как выбраться из болота теории струн

Люди не могут контролировать все

Министерство обороны США придумало НЛО

Млечный Путь обречен на столкновение с Андромедой

НЛО - это шутка

Обнаружена новая Зона 51, скрытая в горах Аляски

Обнаружено место формирования новой планеты

Откуда взялись космические лучи

Перспективы и опасности полета на Марс

Поиск аксионов путем анализа рентгеновских наблюдений

Решение давней загадки нейтронных звезд

Наверх
Яндекс.Метрика