Загадочный закон мегаполисов
|
В течение прошлого века загадочный математический феномен, называемый законом Зипфа, позволял с большой точностью предсказывать изменение размеров городов-гигантов по всему миру. Штука в том, что никто не понимает, как и почему работает этот закон. |
Вернёмся в 1949 год. Лингвист Джордж Зипф заметил странную тенденцию в использовании людьми определённых слов в языке. Он обнаружил, что небольшое количество слов используется постоянно, а подавляющее большинство – очень редко. Если оценить слова по популярности, открывается поразительная вещь: слово первого разряда всегда используется вдвое чаще, чем слово второго разряда и втрое чаще, чем слово третьего разряда. Зипф обнаружил, что это же правило действует в распределении доходов людей в стране: самый богатый человек имеет вдвое больше денег, чем следующий богач и так далее. |
Позже стало понятно, что этот закон также работает в отношении размера городов (гостиницы москвы цены). Город с самым большим населением в любой стране в два раза больше, чем следующий по размеру город и так далее. Невероятно, но закон Зипфа действовал абсолютно во всех странах мира на протяжении прошлого столетия. |
Просто взгляните на список самых больших городов Соединённых Штатов. Итак, в соответствии с переписью 2010-го года население самого большого города США, Нью-Йорка, составляет 8 175 133 человека. Номер два –Лос-Анджелес с населением в 3 792 621 человек. Следующие три города, Чикаго, Хьюстон и Филадельфия, могут похвастаться населением в 2 695 598, 2 100 263 и 1 526 006 человек соответственно. Очевидно, эти числа неточны, но, тем не менее, они удивительно соответствуют закону Зипфа. |
Пол Кругман, писавший о применении закона Зипфа к городам, превосходно подметил: часто экономическую теорию обвиняют в создании сильно упрощённых моделей сложной, беспорядочной действительности. Закон Зипфа показывает, что всё обстоит с точностью до наоборот: мы применяем слишком сложные, беспорядочные модели, а действительность поразительно аккуратна и проста. |
Закон силы |
В 1999 году экономист Ксавье Габэ написал научный труд, в которой описывал закон Зипфа как “закон силы”. |
Габэ отметил, что этот закон сохраняется, даже если города растут в хаотическом порядке. Но эта ровная структура ломается, как только вы переходите к городам, не входящим в разряд мегаполисов. Небольшие города с численностью населения около ста тысяч человек, по всей видимости, подчиняются другому закону и показывают более объяснимое распределение размеров. |
Можно задаться вопросом, что же имеется в виду под определением «город»? Ведь, например, Бостон и Кембридж считаются двумя разными городами, так же, как Сан-Франциско и Окленд, разделённые водой. У двух шведских географов тоже возник такой вопрос, и они стали рассматривать так называемые «естественные» города, объединённые населением и дорожными связками, а не политическими мотивами. И они обнаружили, что даже такие «естественные» города подчиняются закону Зипфа. |
Почему закон Зипфа работает в городах? |
Так что же заставляет города быть столь предсказуемыми в количестве населения? Никто точно не может это объяснить. Нам известно, что города расширяются за счёт иммиграции, иммигранты стекаются в большие мегаполисы, потому что там больше возможностей. Но иммиграции недостаточно, чтобы объяснить этот закон. |
Есть также экономические мотивы, поскольку в больших городах делают большие деньги, а закон Зипфа работает и для распределения доходов. Однако, чёткого ответа на вопрос это по-прежнему не даёт. |
В прошлом году группа исследователей обнаружила, что у закона Зипфа всё же есть исключения: закон работает, только если рассматриваемые города связаны экономически. Это объясняет, почему закон действует, например, для отдельной европейской страны, но не для всего ЕС. |
Как же растут города |
Существует ещё одно странное правило, применимое к городам, оно имеет отношение к тому, каким способом города потребляют ресурсы, когда растут. Вырастая, города становятся более стабильными. Например, если город удваивается в размере, требуемое ему число бензоколонок не увеличивается вдвое. Город будет вполне комфортно жить, если количество бензоколонок увеличится примерно на 77%. В то время, как закон Зипфа следует определённым социальным законам, этот закон более близок к природным, например, к тому, как животные потребляют энергию, становясь взрослее. |
Математик Стивен Строгац описывает это так: |
Сколько калорий в день нужно мыши по сравнению со слоном? Оба они млекопитающие, таким образом, можно предположить, что на клеточном уровне они не должны сильно отличаться. И действительно, если вырастить в лаборатории клетки десяти различных млекопитающих, у всех этих клеток будет одинаковая скорость метаболизма, они не запоминают на генетическом уровне, какого размера в действительности их хозяин. |
Но если взять слона или мышь как полноценное животное, функционирующее скопление миллиардов клеток, то на одно и то же действие клетки слона будут расходовать гораздо меньше энергии, чем клетки мыши. Закон метаболизма, названный законом Кляйбера, утверждает, что метаболические потребности млекопитающего растут пропорционально его массе тела в 0,74 раза. |
Эти 0,74 очень близки к 0,77, наблюдаемым у закона, управляющего количеством бензоколонок в городе. Совпадение? Может быть, но скорее всего нет. |
Всё это ужасно захватывающе, но, пожалуй, менее таинственно, чем закон Зипфа. Не так сложно понять, почему город, являющийся, по сути, экосистемой, хоть и построенной людьми, должен подчиняться естественным законам природы. Но закон Зипфа не имеет аналога в природе. Это социальное явление и оно имеет место только на протяжении последних ста лет. |
Всё, что мы знаем, это то, что закон Зипфа действует и для других социальных систем, включая экономическую и лингвистическую. Таким образом, возможно, есть какие-то общие социальные правила, создающие этот странный закон, и когда-нибудь мы сможем их понять. Тот, кто разгадает этот ребус, возможно, обнаружит ключ к предсказанию намного более важных вещей, чем рост городов. Закон Зипфа может быть лишь небольшим аспектом глобального правила социальной динамики, которое определяет то, как мы общаемся, торгуем, образуем сообщества и многое другое. |
http://mixstuff.ru/archives/42033 |
При использовании материалов с сайта активная ссылка на него обязательна
|